Cisco Systems N7KC7004S2 Upgrading Epld Images, Copy the Epld image to the standby supervisor

Page 125

Chapter 6 Managing the Device Hardware

EPLD Configuration

Se n d d o c u m e n t c o m m e n t s t o n ex u s 7 k - d o c f e e d b a ck @ c i s c o . c o m

25 Apr 28 23:07:28 2008 slot0

Usage for slot: 642273280 bytes used 261824512 bytes free 904097792 bytes total

switch# show module

 

 

Mod Ports Module-Type

Model

Status

-------- -------------------------------- ------------------ ------------

2

32

10 Gbps Ethernet Module

N7K-M132XP-12

ok

5

0

Supervisor

module-1X

N7K-SUP1

ha-standby

6

0

Supervisor

module-1X

N7K-SUP1

active *

...

 

 

 

 

 

switch# attach module 5

 

 

 

...

 

 

 

 

 

switch(standby)# dir slot0:

 

 

 

25

Apr 28

23:07:28 2008

slot0

 

Usage for slot: 642273280 bytes used 261824512 bytes free 904097792 bytes total

Step 4 If there is not at least 120 MB of memory free for the EPLD files, delete some unneeded files, such as earlier images, so there is enough free memory.

switch# delete bootflash:n7000-s1-kickstart.4.0.1.bin

switch# attach module 5

switch(standby)#

Step 5 Copy the EPLD image file from the FTP or management server to the bootflash or slot0 memory in the active supervisor module. The following example shows how to copy from the FTP server to the bootflash memory.

switch# copy ftp://10.1.7.2/n7000-s1-epld.4.0.2.img bootflash:n7000-s1-epld.4.0.2.img

Copy the EPLD image to the standby supervisor.

switch# copy bootflash:n7000-s1-epld.4.0.2.img

bootflash://sup-standby/n7000-s1-epld.4.0.2.img

You are ready to upgrade the EPLD images (see the “Upgrading EPLD Images” section on page 6-31).

Upgrading EPLD Images

When you start upgrading the EPLD images for a module, the Cisco NX-OS software tries to list the current and new versions for each EPLD. If the module is installed and online, the software reports both the installed and new versions of each EPLD, and where there is a difference, the software will upgrade (or downgrade) to the new version when you confirm that the upgrade should occur. For a module that is installed but offline, the software cannot determine the installed versions of its EPLDs so it upgrades all of the EPLDs for that module when you confirm the upgrade. For a module that is not installed, the software displays an error message and does not upgrade the EPLDs.

Example 12 shows how the software reports the current and new EPLD versions for a module that does not need EPLD upgrades. The current and new version numbers for each EPLD are the same.

 

 

Cisco Nexus 7000 Series Hardware Installation and Reference Guide

 

 

 

 

 

 

OL-18634-01

 

 

6-31

 

 

 

 

 

Image 125
Contents Americas Headquarters Page N T E N T S Prerequisites for Connecting Power Supply Units to AC Power Modules Displaying Epld Versions for an I/O or Supervisor Module Chassis Airflow A-12 Chassis and Module LEDs C-1 Audience PrefaceOrganization Chapter DescriptionConvention Description Document ConventionsConservez CES Informations Aviso Instruções Importantes DE Segurança Warnung Wichtige SicherheitshinweiseAvvertenza Importanti Istruzioni Sulla Sicurezza Spara Dessa Anvisningar GEM Disse Anvisninger Preface Release Notes Related DocumentationObtaining Documentation and Submitting a Service Request Xviii Cisco Nexus 7010 System OverviewCisco Nexus 7000 Series Overview Cisco Nexus 7000 Series Mid-frame door assembly Air filter 187118 One Cisco Nexus 7010 Chassis Installed in a Four-Post Rack Cisco Nexus 7018 System Two Cisco Nexus 7010 Chassis Installed in a Four-Post Rack189972 Cable Management System for the 7018 Chassis Front doors OL-18634-01 Overview Cisco Nexus 7000 Series Preparing the Site 10 Cisco Nexus 7018 Chassis Installed in a Four-Post RackManaging the System Hardware Safety GuidelinesInstallation and Connection Guidelines Replacing Components Required Tools Installing a Cisco Nexus 7010 ChassisPreparing to Install the Device Installing a Four-Post Rack or Cabinet Unpacking and Inspecting a New Device Installing the Bottom-Support Rails on the RackRequired Tools and Equipment Prerequisites for Attaching the Bottom-Support RailsAttaching the Bottom-Support Rails Part Description QuantityPage Positioning the Bottom-Support Rails Attaching a Bottom-Support Rail to a Rack Installing the ChassisPrerequisites for Installing the Chassis Installing the Chassis Moving a Cisco Nexus 7010 Chassis onto a Rack Attaching the Cisco Nexus 7010 Chassis to the Rack Grounding the Cisco Nexus 7010 ChassisPrerequisites for Grounding the Chassis Connecting the System GroundGrounding Port on the Front of the Cisco Nexus 7010 Chassis Grounding Port on the Rear of the Cisco Nexus 7010 Chassis Connecting Your ESD Strap to the ChassisESD port Installing and Formatting CompactFlash Cards 10 Aligning a CompactFlash Card to its Reader OL-18634-01 Installing a Cisco Nexus 7018 Chassis Installing a Four-Post Rack or Cabinet Prerequisites for Attaching the Bottom-Support Rails, Unpacking and Inspecting a New ChassisPrerequisites for Attaching the Bottom-Support Rails 192147 Installing a Cisco Nexus 7018 Chassis Installing the Chassis Prerequisites for Installing the Chassis Installing the Chassis Moving a Cisco Nexus 7018 Chassis onto a Rack Attaching the Cisco Nexus 7018 Chassis to the Rack Grounding the Cisco Nexus 7018 Chassis 185848 Grounding Port on the Cisco Nexus 7018 Chassis Installing the Cable Management Assemblies 192181 192182 192188 192189 Installing the Front Door and Air Intake Frame 13 Attaching the Left Door Stopper 14 Attaching the Right Door Stopper 192228 Step 17 Fastening Ball-Point Studs to the Air Intake Area 18 Positioning the Air Intake Frame on the Chassis 19 Attaching One Side of the Door to the Chassis 20 Attaching the Left Side of the Door 21 Attaching the Right Side of the Door 22 Aligning a CompactFlash Card to its Reader OL-18634-01 Installing Power Supply Units Installing Power Supply UnitsPrerequisites for Connecting Power Supply Units to AC Power Connecting the Power Supply Units to AC Power250V, 20 a Connecting 6-kW Power Supply UnitsConnecting 7.5-kW Power Supply Units 250V, 20 a Statement Required Tools and Equipment Connecting the Cisco Nexus 7000 Device to the NetworkPreparing for Connections COM1/AUX Serial Port Connecting to the ConsoleCreating an Initial Device Configuration Setting Up the Management Interface Connecting an I/O Module Connecting the Supervisor CMP PortConnecting or Disconnecting an SFP or SFP+ Port Connecting or Disconnecting a 1000Base-T PortInstalling a Transceiver Connecting a Fiber-Optic Cable with a Transceiver Maintaining Transceivers and Fiber-Optic Cables OL-18634-01 Displaying the Device Hardware Inventory Managing the Device HardwareExample 6-1 Displaying the Hardware Inventory CMP Clei Displaying the Device Serial Number Show sprom backplane 1 command. See ExampleExample 6-3 Displaying the Device Serial Number Example 6-4 Displaying Power Management Information Displaying Power Usage InformationPower Supply Configuration Overview Power Supply Configuration ModesFull Power SupplyCombined ModeCommand Purpose Power Supply Input Source Full Combined Redundancy ModePower System Available Supply Usage Scenario Result Power Supply Configuration GuidelinesUsage Power Scenario Result Power System Available Reserve SupplySupply Usage Power Scenario Result Power System Available ReserveModule Terms Fixed or Relative Usage Information About ModulesSupervisor Modules Fabric Modules Verifying the Status of a ModuleModules Status Output Description Checking the State of a ModuleShutting Down Modules Connecting to a ModuleOverview of Module Temperatures Information About Module TemperatureShutting Down a Supervisor or I/O Module Shutting Down a Fabric ModuleExample 6-6 Displaying Temperature Information for Hardware Displaying Module TemperatureExample 6-7 Displaying All Environmental Information Displaying Environment InformationReloading Modules Reloading the Device, Power Cycling Modules,Power Cycling Modules Saving the Module ConfigurationReloading the Device Scenario ConsequencePowering Off I/O Modules Purging the Module ConfigurationExample 6-8 Displays Chassis Fan Information Information About Fan TraysSystem Requirements Epld ConfigurationNX-OS Release Module Type Epld Device New Epld Version Updated EPLDsModule Type Epld Device Epld Version Module Type Epld Device New Epld VersionDownloading the Epld Images Installation GuidelinesChoose Latest Releases Preparing the Epld Images for InstallationExample Determining the Amount of Available Bootflash Memory Copy the Epld image to the standby supervisor Upgrading Epld ImagesExample 12 Epld Version Comparison Report-No Upgrade Needed Begin upgrading the Epld images by entering Y for yes Upgrading EPLDs for the Active Supervisor Module Upgrading EPLDs for a Fabric Module Upgrading EPLDs for a Fan Tray Module Displaying the Epld Versions Url commandDisplaying Epld Versions for a Fabric Module Parameters Default Default SettingsOL-18634-01 Getting Started TroubleshootingTroubleshooting the Power Supply Troubleshooting the Supervisor Modules Troubleshooting the Fan TraysTroubleshooting the Fabric Modules Troubleshooting the I/O Modules Contacting Customer Service Replacing a Power Supply Unit During Operations Removal and Installation ProceduresInstalling a Power Supply Unit During Operations Removing a Power Supply Unit During OperationsPage Replacing a Supervisor Module Unseating a Supervisor Module Removing the Plastic Protector from the Supervisor Module Replacing a Supervisor Module in a Single-Supervisor System Replacing an I/O Module Replacing an I/O Module Unseating an I/O Module Replacing a Fabric Module Replacing a Fabric Module During System OperationsMidplane connector see View C in Figure Replacing a Cisco Nexus 7010 System Fan Tray Replacing a Cisco Nexus 7010 Fabric Fan Tray Replacing a Cisco Nexus 7010 Fabric Fan TrayPush the card all the way into the reader Replacing a CompactFlash CardRemoving the Bottom Frame Removing the Front Doors Installing the Front Doors and Frame AssemblyInstalling the Front Doors Installing the Bottom Frame Replacing the Cisco Nexus 7010 System Air Filter Removing a Middle Door AssemblyOL-18634-01 OL-18634-01 Description Cisco Nexus Technical SpecificationsChassis Width Depth Height Component Weight per Unit QuantityPower Requirements for Device Components Component Quantity Maximum Typical Power Supply Configuration ModesTable A-7 Power Availability for 6-kW Power Supply Units Redundancy Mode Power cord Power Supply Cable SpecificationsReference LocaleCordset rating 16A Plug SI16S3 Local Cord rating Chassis Clearances Chassis Airflow Facility Cooling RequirementsFigure A-14 Airflow for the Cisco Nexus 7018 Chassis Appendix a Technical Specifications Chassis Airflow RJ-45 Connector Cable and Port SpecificationsModule Connectors SFP+ Transceivers SFP TransceiversCable Transceiver TypeParameter Minimum Appendix B Cable and Port Specifications SFP Transceivers Color Condition Chassis and Module LEDsStatus Status DescriptionACT LOG Table C-3 Module LEDs Table C-4describes the fabric module LEDs LED Indication Condition Powering Down the Cisco Nexus 7000 Series System Disconnecting the Cisco Nexus 7000 Series SystemDisconnecting the System from the Console Repacking the Cisco Nexus 7000 Series Device for ShipmentRepacking the System Components Disconnecting the System from the NetworkPrerequisites for Repacking the System Required Tools and Equipment for Repacking the SystemRepacking the Cisco Nexus 7010 Device Figure D-1 Packing a Power Supply Unit Page Figure D-2 Attaching the Chassis to the Shipping Pallet Figure D-3 Packing the System Components OL-18634-01 Planning Activity Site Preparation and Maintenance RecordsSite Preparation Checklist Table E-2 Contact and Site Information Contact and Site InformationContract Number Chassis serial number Product number Chassis and Module InformationOL-18634-01 Numerics IN-2 IN-3 IN-4 IN-5 IN-6
Related manuals
Manual 74 pages 37.11 Kb Manual 40 pages 45.09 Kb Manual 26 pages 14.8 Kb Manual 2 pages 24.73 Kb

N6KC600164P, UCSCPCIECSC02, N7KF248XP25E, N7KF248XT25E, N7KF248XT25EP1 specifications

Cisco Systems 7000 series routers are pivotal in the landscape of networking, providing high-performance, reliable solutions for enterprise environments and service providers. These routers were designed to support the growing demands of digital communication, offering robust features that enhance connectivity and streamline network operations.

One of the primary characteristics of the Cisco 7000 series is its modular architecture. This allows for the integration of various interface modules and processing units, enabling organizations to customize their routers according to specific networking needs. The modularity supports scalability, as businesses can upgrade or replace components as their requirements evolve without having to replace the entire system.

The Cisco 7000 series incorporates advanced routing protocols, ensuring efficient data packet management and traffic flow. It supports multiple protocols, including OSPF, BGP, and EIGRP, facilitating seamless integration into a variety of network environments. This flexibility is essential in modern networks, where diverse communication protocols are in use.

Load balancing capabilities are another significant feature of the Cisco 7000 series. This functionality allows for the optimal distribution of network traffic across multiple paths, enhancing performance and redundancy. By ensuring that no single route is overwhelmed, organizations can maintain uptime and improve overall user experience.

Security is a top priority for many businesses, and the Cisco 7000 series addresses this need with built-in security features. It supports Virtual Private Networks (VPNs) and access control lists (ACL) to provide secure remote access and protect sensitive data from unauthorized access. This capability is vital in today’s threat landscape, where data breaches can have far-reaching consequences.

The series also boasts high throughput and low latency, making it suitable for bandwidth-intensive applications like video conferencing and cloud computing. Coupled with Quality of Service (QoS) features, the Cisco 7000 ensures that critical applications receive the bandwidth they need, thereby enhancing overall network performance.

In terms of manageability, the Cisco 7000 routers come equipped with advanced monitoring and diagnostic tools. Network administrators can easily track performance metrics and identify potential issues before they escalate, minimizing downtimes and maintaining business continuity.

In summary, the Cisco Systems 7000 series routers are a sophisticated solution for organizations seeking to optimize their networking infrastructure. With modularity, robust routing protocols, load balancing, security features, high performance, and comprehensive manageability, the Cisco 7000 series stands out as a reliable foundation for successful network operations in an increasingly connected world.