Cisco Systems MGX-FRSM-HS2, MGX-FRSM-2CT3 manual Frame Service Module Features, Introduction

Page 19

Frame Service Module Features

Frame Service Module Features

This section describes the features available on each of the Frame Service Modules (FRSMs). For descriptions of how to set up these cards and add connections, see the subsequent section titled “Configuring Frame Relay Service.” This section consists of:

Brief descriptions of each model of the FRSM

Lists of features shared by all FRSMs

Lists of features for individual models of the FRSM

Brief descriptions of the services

Introduction

The primary function of the FRSM is to convert between the Frame Relay-formatted data and ATM/AAL5 cell-formatted data. For an individual connection, you can configure network interworking (NIW), service interworking (SIW), ATM to Frame Relay UNI (FUNI), or frame forwarding. An FRSM converts the header format and translates the address for:

Frame Relay port number and DLCI

ATM-Frame UNI (FUNI) port number and frame address or frame forwarding port

ATM virtual connection identifier (VPI/VCI)

Types of Frame Service Modules

The models of the FRSM include eight-port T1 and E1 cards and very high-speed modules. Higher speed modules support unchannelized E3 and HSSI as well as channelized and unchannelized T3.

Very High Speed Frame Service Modules

The Very High Speed Frame Service Modules (FRSM-VHS) support Frame Relay services on T3, E3, and HSSI interfaces. Up to 24 FRSM-VHS cards in any combination can operate in the switch. They should occupy upper slots whenever possible. The FRSM-VHS group on an MGX 8850 node consists of the:

MGX-FRSM-2CT3, which provides channelized Frame Relay service for up to 1000 user connections over two T3 lines on the BNC-2T3 back card (or line module).

MGX-FRSM-2T3E3, which provides unchannelized (clear-channel) Frame Relay service for up to 1000 user connections over two T3 lines (44.736 Mbps each) or two E3 lines (34.368 Mbps each) on a BNC-2T3 or BNC-2E3 back card. The MGX-FRSM-2T3E3 can also support subrate T3 or E3 for tiered DS3 on each physical port.

MGX-FRSM-HS2, which provides unchannelized Frame Relay service for up to 1000 user-connections over two HSSI lines on the SCSI2-2HSSI back card. The maximum rate for the card is 70 Mbps. Each port can operate either as DTE or DCE with incremental rates of NxT1 or NxE1 up to 52 Mbps.

Eight-Port Channelized and Unchannelized Frame Service Module

The AX-FRSM-8T1 and AX-FRSM-8E1 provide unchannelized Frame Relay service for up to 1000 user-connections on 8 T1 or E1 lines. The AX-FRSM-8T1c and AX-FRSM-8E1c provide channelized Frame Relay service for up to 1000 connections.

Card and Service Configuration 6-19

Image 19
Contents Modifying the Resource Partitioning Tasks for Configuring Cards and ServicesRules for Adding Connections Sequence of Configuration TasksRules for Adding Three-Segment Connections Rules for Adding a DAX ConnectionRules for Adding Management Connections Processor Switching Module Cnfcdrscprtn numberPARconns numberPNNIconns numberTAGconns Configuring Card-Level Parameters, Lines, and PortsAddport portnum linenum pctbw minvpi maxvpi Cnfatmln linenum type Automatic Protection Switching on the PXMProcessor Switching Module Cnfcon connID routepriority maxcost restricttrunktype CAC Adding Connections on a PXM in a Stand-Alone NodeCnfupcubr connID polType pcr0+1 cdvt0+1 IngPcUtil CLP Using the CLI to Configure the Card, Lines, and Ports ATM Universal Service ModuleCnfportq portnum qnum qalgo qdepth clphigh clplow efcithres Cnfcdrscprtn 300 300Porttype Is the port type 1=UNI, 2=NN1 Using the CLI to Configure Inverse MultiplexingAdding and Configuring Connections on the AUSM/B Addimagrp groupnum porttype listoflinks minNumLinkConnID Default is slave, so you actually do not need to type aSlot number, port number, vci, and vpi of the slave end ATM Universal Service Module Adding and Configuring Connections on the AUSM/B Epdthreshold BPX 8600-to-BPX 8600 SegmentEfcithresh Is the Efci threshold in the range 1-16000 cells Introduction Frame Service Module FeaturesTypes of Frame Service Modules Very High Speed Frame Service ModulesFour-Port Unchannelized Frame Service Module for Frame Service Module FeaturesMGX-FRSM-2T3E3 Features MGX-FRSM-2CT3 FeaturesMGX-FRSM-HS1/B Features MGX-FRSM-HS2/B FeaturesEight-Port Frsm Features Frame Relay-to-ATM Network Interworking Description of Connection Types on the FrsmCongestion Indication for NIW Connections PVC Status Management Frame Relay-to-ATM Service InterworkingCell Loss Priority Congestion Indication Translation and Transparent Modes Command and Response MappingFrame Forwarding ATM/Frame-to-User Network InterfaceConfiguring the Frsm Cards, Lines, and Ports Configuring Frame Relay ServiceCnfln linenum linetype linerate Addport portnum linenum ds0speed beginslot numslot porttype Addport portnum linenum porttypeCnfport portnum lmisig asyn elmi T391 T392 N391 N392 N393 Addport portnum porttypeConfiguring Frame Relay Service Addred redPrimarySlotNum redSecondarySlotNum redType Adding a Frame Relay ConnectionConfiguring Frame Relay Service =NIW Cnfchanmap channum chanType FECN/EFCI DE to CLP CLP to DEEstablishing the BPX 8600-to-BPX 8600-Series Segment Test Commands for the FRSMsBit Error Rate Testing on an Unchannelized T3 or E3 Frsm Features Circuit Emulation Service Module for T3 and E3Cell Delay Treatment Error and Alarm Response Configuring Service on a T3 or E3 CesmAdding and Modifying Connections Configuring the Card, Lines, and PortsCnfcon portnum Cdvt CellLossIntegPeriod bufsize Addcon portnum mastership remoteConnIdBit Error Rate Testing on a T3 or E3 Cesm Structured Data Transfer Eight-Port Circuit Emulation Service ModulesUnstructured Data Transfer Error and Alarm Response Cell Delay TreatmentRedundancy Support for the Eight-Port Cesm Cnfln linenum linecode linelen clksrc E1-signaling Configuring Service on an Eight-Port CesmAddport portnum linenum beginslot numslot porttype Configuring Bulk Distribution and RedundancyAdding and Modifying Connections Eight-Port Circuit Emulation Service Modules Configuring Card and Line Parameters Service Resource ModuleRedundancy Support by the MGX-SRM-3T3/B Bulk Distribution for T1 ServiceTo specify 11 redundancy. Enter a 2 to specify 1 N Configuring Redundancy Through the Redundancy BusRedundancy . Only an SRM can support 1 N redundancy 11-14, 17-22, Bit Error Rate Testing Through an MGX-SRM-3T3Configuring Redundancy Through the Distribution Bus Card pair. Permissible slot numbers are in the rangeBit Error Rate Testing Through an MGX-SRM-3T3 Pattern Test for AX-FRSM-8E1 and MGX-CESM-8E1 In-band/ESF Pattern Test OptionsLoopback Test Options

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.