Cisco Systems MGX-FRSM-2T3E3 manual Bit Error Rate Testing on an Unchannelized T3 or E3 Frsm

Page 35

Bit Error Rate Testing on an Unchannelized T3 or E3 FRSM

addchanloop and delchanloop are standard user commands for looping on a channel.

tstcon checks the integrity of a connection.

tstdelay measures the round trip delay on a connection.

Bit Error Rate Testing on an Unchannelized T3 or E3 FRSM

The MGX 8850 switch can perform a bit error rate test (BERT) on one active line at a time on the MGX-FRSM-2T3 or MGX-FRSM-2E3. This type of testing disrupts service because it requires the tested path to be in loopback mode. You can configure a BERT session and perform related tasks through the CiscoView application or the CLI.

The MGX 8850 bus structure supports one BERT session per upper or lower bay of the card cage, so the switch can run a maximum of two sessions at once. When you specify the target slot through the CiscoView application or the acqdsx3bert command on the CLI, the system determines if a BERT configuration already exists in the bay that has the specified slot. If no BERT configuration exists in the bay, the display presents a menu for the BERT parameters.

The CLI commands (whose functions correspond to CiscoView selections) are:

acqdsx3bert to determine if other BERT sessions exist in the bay

cnfdsx3bert to specify a pattern for the BERT test

startdsx3bert to start a BERT test (after resetting BERT counters)

moddsx3bert to inject multi-rate errors into the BERT bit stream

dspdsx3bert to display the parameters and results of the current test

deldsx3bert to end the current test (and retain the values in the BERT counters)

See the Cisco MGX 8850 Wide Area Edge Switch Command Reference for command details.

Note When a BERT session begins, all the connections on the line go into alarm and return to normal when you end the test. Consequently, the test may result in a large number of traps and other types of traffic (such as AIS).

Card and Service Configuration 6-35

Image 35
Contents Modifying the Resource Partitioning Tasks for Configuring Cards and ServicesRules for Adding Connections Sequence of Configuration TasksRules for Adding Three-Segment Connections Rules for Adding a DAX ConnectionRules for Adding Management Connections Processor Switching Module Addport portnum linenum pctbw minvpi maxvpi Configuring Card-Level Parameters, Lines, and PortsCnfcdrscprtn numberPARconns numberPNNIconns numberTAGconns Cnfatmln linenum type Automatic Protection Switching on the PXMProcessor Switching Module Cnfcon connID routepriority maxcost restricttrunktype CAC Adding Connections on a PXM in a Stand-Alone NodeCnfupcubr connID polType pcr0+1 cdvt0+1 IngPcUtil CLP Using the CLI to Configure the Card, Lines, and Ports ATM Universal Service ModuleCnfportq portnum qnum qalgo qdepth clphigh clplow efcithres Cnfcdrscprtn 300 300Porttype Is the port type 1=UNI, 2=NN1 Using the CLI to Configure Inverse MultiplexingAdding and Configuring Connections on the AUSM/B Addimagrp groupnum porttype listoflinks minNumLinkSlot number, port number, vci, and vpi of the slave end Default is slave, so you actually do not need to type aConnID ATM Universal Service Module Adding and Configuring Connections on the AUSM/B Efcithresh Is the Efci threshold in the range 1-16000 cells BPX 8600-to-BPX 8600 SegmentEpdthreshold Introduction Frame Service Module FeaturesTypes of Frame Service Modules Very High Speed Frame Service ModulesFour-Port Unchannelized Frame Service Module for Frame Service Module FeaturesMGX-FRSM-2T3E3 Features MGX-FRSM-2CT3 FeaturesEight-Port Frsm Features MGX-FRSM-HS2/B FeaturesMGX-FRSM-HS1/B Features Congestion Indication for NIW Connections Description of Connection Types on the FrsmFrame Relay-to-ATM Network Interworking Cell Loss Priority Frame Relay-to-ATM Service InterworkingPVC Status Management Congestion Indication Translation and Transparent Modes Command and Response MappingFrame Forwarding ATM/Frame-to-User Network InterfaceCnfln linenum linetype linerate Configuring Frame Relay ServiceConfiguring the Frsm Cards, Lines, and Ports Addport portnum linenum ds0speed beginslot numslot porttype Addport portnum linenum porttypeCnfport portnum lmisig asyn elmi T391 T392 N391 N392 N393 Addport portnum porttypeConfiguring Frame Relay Service Addred redPrimarySlotNum redSecondarySlotNum redType Adding a Frame Relay ConnectionConfiguring Frame Relay Service =NIW Cnfchanmap channum chanType FECN/EFCI DE to CLP CLP to DEEstablishing the BPX 8600-to-BPX 8600-Series Segment Test Commands for the FRSMsBit Error Rate Testing on an Unchannelized T3 or E3 Frsm Cell Delay Treatment Circuit Emulation Service Module for T3 and E3Features Error and Alarm Response Configuring Service on a T3 or E3 CesmAdding and Modifying Connections Configuring the Card, Lines, and PortsCnfcon portnum Cdvt CellLossIntegPeriod bufsize Addcon portnum mastership remoteConnIdBit Error Rate Testing on a T3 or E3 Cesm Unstructured Data Transfer Eight-Port Circuit Emulation Service ModulesStructured Data Transfer Redundancy Support for the Eight-Port Cesm Cell Delay TreatmentError and Alarm Response Cnfln linenum linecode linelen clksrc E1-signaling Configuring Service on an Eight-Port CesmAddport portnum linenum beginslot numslot porttype Configuring Bulk Distribution and RedundancyAdding and Modifying Connections Eight-Port Circuit Emulation Service Modules Configuring Card and Line Parameters Service Resource ModuleRedundancy Support by the MGX-SRM-3T3/B Bulk Distribution for T1 ServiceRedundancy . Only an SRM can support 1 N redundancy Configuring Redundancy Through the Redundancy BusTo specify 11 redundancy. Enter a 2 to specify 1 N 11-14, 17-22, Bit Error Rate Testing Through an MGX-SRM-3T3Configuring Redundancy Through the Distribution Bus Card pair. Permissible slot numbers are in the rangeBit Error Rate Testing Through an MGX-SRM-3T3 Pattern Test for AX-FRSM-8E1 and MGX-CESM-8E1 In-band/ESF Pattern Test OptionsLoopback Test Options

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.