Cisco Systems MGX-FRSM-2CT3 Cell Delay Treatment, Redundancy Support for the Eight-Port Cesm

Page 42

Eight-Port Circuit Emulation Service Modules

Cell Delay Treatment

For each connection, you can configure a tolerable variation in the cell arrival time (CDVT) according to the expected reliability of the route. The CDVT applies to the receive buffer. After an underrun, the receiver places the contents of the first cell to arrive in a receive buffer then plays it out at least one CDVT value later. For each VC, the maximum cell delay and CDVT (or jitter) are:

For T1

Cell delay of 48 msec

CDVT of 24 msec in increments of 125 microseconds For E1

Cell delay of 64 msec

CDVT of 32 msec in increments of 125 microseconds

Redundancy Support for the Eight-Port CESM

The MGX-CESM-8T1 and MGX-CESM-8E1 can have 1:N redundancy support but with some variations between the T1 and E1 modes of operation. The type of redundancy and the type of back card are interdependent. See “Service Resource Module” for more details. In general:

With an RJ48-8T1, an MGX-SRM-3T3 can provide 1:N redundancy through the distribution bus or the redundancy bus.

With an RJ48-8E1, an MGX-SRM-3T3 can provide 1:N redundancy through the redundancy bus. Back card requirements for the MGX-SRM-3T3 and service modules vary, as follows:

If you are using the MGX-SRM-3T3 for bulk distribution of T1 channels, the CESMs do not use back cards, but each MGX-SRM-3T3/B must have an MGX-BNC-3T3-M back card. (Bulk distribution is not available for E1 operation.)

If the MGX-SRM-3T3/B supports T1 or E1 1:N redundancy through the redundancy bus (no bulk distribution), the MGX-SRM-3T3/B does not require a back card, but the N CESM primary cards must have one redundant version of the back card.

Error and Alarm Response

When it detects a loss of signal (LOS) alarm, the CESM notifies the connected CPE in the upstream direction after an integration period. The CESM continues to emit cells but sets the ATM cell payload with an appropriate data pattern as specified by the ATM Forum CES V2.0 specification. Also, an OAM cell with RDI code goes to the far end to indicate out-of-service. See Table 6-4.

Table 6-4

CESM Errors and Alarms

 

 

 

 

 

 

 

 

Alarm

Down

 

 

Error

Type

stream

Up Stream

Comments

 

 

 

 

 

Link Failure

Blue (LOS)

AIS—OAM

none

Data cells According to

(RX)

 

cells

 

ATM-Forum CES-IS V 2.0

 

 

 

 

 

Receive RAI

Yellow

None

None

 

 

 

 

 

 

Receive LOF

 

n/a

n/a

.

 

 

 

 

 

Receive AIS

Blue (AIS)

AIS (link)

FERF OAM

AIS over the T1 link or

 

 

 

cells

alternating 1s and 0s E1 link.

 

 

 

 

 

6-42Cisco MGX 8850 Installation and Configuration, Release 1.1.00, Part Number 78-6186-02

Image 42
Contents Tasks for Configuring Cards and Services Modifying the Resource PartitioningSequence of Configuration Tasks Rules for Adding ConnectionsRules for Adding a DAX Connection Rules for Adding Three-Segment ConnectionsRules for Adding Management Connections Processor Switching Module Configuring Card-Level Parameters, Lines, and Ports Cnfcdrscprtn numberPARconns numberPNNIconns numberTAGconnsAddport portnum linenum pctbw minvpi maxvpi Automatic Protection Switching on the PXM Cnfatmln linenum typeProcessor Switching Module Adding Connections on a PXM in a Stand-Alone Node Cnfcon connID routepriority maxcost restricttrunktype CACCnfupcubr connID polType pcr0+1 cdvt0+1 IngPcUtil CLP ATM Universal Service Module Using the CLI to Configure the Card, Lines, and PortsCnfcdrscprtn 300 300 Cnfportq portnum qnum qalgo qdepth clphigh clplow efcithresAddimagrp groupnum porttype listoflinks minNumLink Using the CLI to Configure Inverse MultiplexingAdding and Configuring Connections on the AUSM/B Porttype Is the port type 1=UNI, 2=NN1Default is slave, so you actually do not need to type a ConnIDSlot number, port number, vci, and vpi of the slave end ATM Universal Service Module Adding and Configuring Connections on the AUSM/B BPX 8600-to-BPX 8600 Segment EpdthresholdEfcithresh Is the Efci threshold in the range 1-16000 cells Very High Speed Frame Service Modules Frame Service Module FeaturesTypes of Frame Service Modules IntroductionFrame Service Module Features Four-Port Unchannelized Frame Service Module forMGX-FRSM-2CT3 Features MGX-FRSM-2T3E3 FeaturesMGX-FRSM-HS2/B Features MGX-FRSM-HS1/B FeaturesEight-Port Frsm Features Description of Connection Types on the Frsm Frame Relay-to-ATM Network InterworkingCongestion Indication for NIW Connections Frame Relay-to-ATM Service Interworking PVC Status ManagementCell Loss Priority Congestion Indication ATM/Frame-to-User Network Interface Command and Response MappingFrame Forwarding Translation and Transparent ModesConfiguring Frame Relay Service Configuring the Frsm Cards, Lines, and PortsCnfln linenum linetype linerate Addport portnum linenum porttype Addport portnum linenum ds0speed beginslot numslot porttypeAddport portnum porttype Cnfport portnum lmisig asyn elmi T391 T392 N391 N392 N393Configuring Frame Relay Service Adding a Frame Relay Connection Addred redPrimarySlotNum redSecondarySlotNum redTypeConfiguring Frame Relay Service Cnfchanmap channum chanType FECN/EFCI DE to CLP CLP to DE =NIWTest Commands for the FRSMs Establishing the BPX 8600-to-BPX 8600-Series SegmentBit Error Rate Testing on an Unchannelized T3 or E3 Frsm Circuit Emulation Service Module for T3 and E3 FeaturesCell Delay Treatment Configuring Service on a T3 or E3 Cesm Error and Alarm ResponseConfiguring the Card, Lines, and Ports Adding and Modifying ConnectionsAddcon portnum mastership remoteConnId Cnfcon portnum Cdvt CellLossIntegPeriod bufsizeBit Error Rate Testing on a T3 or E3 Cesm Eight-Port Circuit Emulation Service Modules Structured Data TransferUnstructured Data Transfer Cell Delay Treatment Error and Alarm ResponseRedundancy Support for the Eight-Port Cesm Configuring Service on an Eight-Port Cesm Cnfln linenum linecode linelen clksrc E1-signalingConfiguring Bulk Distribution and Redundancy Addport portnum linenum beginslot numslot porttypeAdding and Modifying Connections Eight-Port Circuit Emulation Service Modules Service Resource Module Configuring Card and Line ParametersBulk Distribution for T1 Service Redundancy Support by the MGX-SRM-3T3/BConfiguring Redundancy Through the Redundancy Bus To specify 11 redundancy. Enter a 2 to specify 1 NRedundancy . Only an SRM can support 1 N redundancy Card pair. Permissible slot numbers are in the range Bit Error Rate Testing Through an MGX-SRM-3T3Configuring Redundancy Through the Distribution Bus 11-14, 17-22,Bit Error Rate Testing Through an MGX-SRM-3T3 Pattern Test for AX-FRSM-8E1 and MGX-CESM-8E1 Pattern Test Options In-band/ESFLoopback Test Options

MGX-FRSM-HS2, MGX-FRSM-2T3E3, MGX-FRSM-2CT3 specifications

Cisco Systems is a leader in networking technology and infrastructure, providing solutions that drive innovation and efficiency for businesses worldwide. Among its diverse range of products, the MGX series stands out as a pivotal component for the network-centric era, especially with models like MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2. These modules are primarily designed for the MGX 8800 series routers, facilitating efficient traffic management and service delivery.

The MGX-FRSM-2CT3 is a versatile module that supports two T3 connections. It allows network operators to seamlessly integrate high-capacity circuit-switched and packet-switched data on a unified platform. This versatility is crucial for service providers looking to enhance their bandwidth offerings while ensuring reliable performance across voice, video, and data applications.

In contrast, the MGX-FRSM-2T3E3 module caters to operators needing E3 support. This feature allows for efficient data transport over a broader bandwidth, catering to European standards. The E3 configuration is vital for service providers operating in Europe or regions that utilize E3 technology prominently.

The MGX-FRSM-HS2 module is another significant offering, designed to accommodate the increasing demand for high speed and high capacity. It supports higher-order TDM and packet technologies, enabling operators to implement advanced services such as VoIP, video conferencing, and other data-intensive applications. This module provides scalability and reliability, making it ideal for next-generation networks.

All three modules leverage Cisco’s advanced switching and routing technology, ensuring optimal performance and minimal latency. The integration of Quality of Service (QoS) features allows network administrators to prioritize traffic types effectively, ensuring mission-critical applications receive the necessary bandwidth.

Additionally, these MGX modules support various signaling protocols, enabling interoperability with existing network infrastructure while also facilitating the migration to newer technologies. They play an essential role in modernizing telecom networks, allowing service providers to adapt to changing market demands and technology landscapes.

In summary, the Cisco MGX-FRSM-2CT3, MGX-FRSM-2T3E3, and MGX-FRSM-HS2 modules are key components for businesses looking to enhance their networking capabilities. With their robust support for T3 and E3 technologies, high scalability, and advanced QoS features, these modules empower service providers to deliver a wide range of services, drive innovation, and meet the growing demands of users in an increasingly connected world.