Texas Instruments TPS40090EVM-002 manual Output Ripple Cancellation and Capacitor Selection

Page 9

SLUU195 − June 2004

IRMS_CIN(nom) − Normalized RMS Input − A

0.6

0.5

0.4

0.3

0.2

0.1

0

0

NPH = 1

NPH = 2

NPH = 3

NPH = 4

NPH = 6

10

20

30

40

50

60

70

80

90

100

 

 

 

Duty Cycle − %

 

 

 

 

 

Figure 4. Input Ripple Current RMS Value Overload Current

 

The maximum input ripple RMS current can be estimated as shown in (4).

 

I ^ IOUT D IIN(nom) ￿4, Dmin￿ + 3.18 A

(4)

It is also important to consider a minimum capacitance value which limits the voltage ripple to a specified value if all the current is supplied by the onboard capacitor. For a typical ripple voltage of 150 mV the maximum ESR is calculated in (5) as:

D V

 

150 mV

+ 47 mW

(5)

ESR + D I

+

3.18 A

 

Two 68-F, 20-V Oscon capacitors (20SVP68M) from Sanyo are placed on the input side of the board. The ESR is 40 mfor each capacitor.

4.4Output Ripple Cancellation and Capacitor Selection

Due to the interleaving of channels, the total output ripple current is smaller than the ripple current from a single phase. The ripple cancellation factor is expressed in equation (6).

 

 

NPH

￿i

 

 

N

 

 

D￿

 

 

 

 

 

 

P

 

*

PH

 

 

 

 

 

DIOUT

￿NPH, D￿ +

￿i + 1

 

 

 

￿

 

 

(6)

 

 

 

 

 

 

 

 

 

 

￿￿

 

*1

 

 

 

 

 

 

 

 

 

 

 

 

NPH

￿i

 

N

 

 

 

D￿

 

1

 

 

 

P

*

 

 

 

)

 

 

￿i + 1 ￿

 

 

PH

 

 

 

k ￿NPH, D￿ + if ￿NPH v 1, DIOUT(D), DIOUT ￿NPH, D￿￿

 

TPS40090 Multi-Phase Buck Converter and TPS2834 Drivers Steps-Down from 12-V to 1.5-V at 100 A

9

Image 9
Contents User’s Guide EVM Important Notice Dynamic Warnings and Restrictions Introduction Schematic FeaturesTransen Frequency of Operation Component SelectionInput Capacitor Selection Inductance ValuePH, D + if N PH v 1, DI OUTD, DI OUT N PH, D Output Ripple Cancellation and Capacitor SelectionIripple + L VoutCurrent Sensing Mosfet SelectionOUT Overcurrent Limit ProtectionR11 Compensation ComponentsConnections for the Test Test SetupTotal Power Loss Output Current Efficiency and Power LossTest Results and Performance Data Overall Efficiency Output CurrentGain and Phase Oscillator Frequency Closed-Loop PerformanceOutput Ripple and Noise Transient Response Transient ResponseJ11 Short Circuit Start up with Pre-Biased OutputLayout Considerations Top Side Component Assembly EVM Assembly Drawing and PCB LayoutTop Side Copper Internal 2 Power Plane Bottom Layer Copper QTY List of MaterialsLoad Transient Circuit Products Applications Important Notice