VXI SM8000 user manual Calculating Switching Time, 8MULTI-SWITCH Timing

Page 33

VXI Technology, Inc.

REGISTER

WRITE

BUSY

16ms

 

300ms

 

OUTPUT

FIGURE 3-8:MULTI-SWITCH TIMING

Calculating Switching Time

The time-period for switching a channel can be divided into three constituent periods. The first time-period ends when the BUSY signal goes high. For calculating switching time, however, only the last two periods are used.

The second time-period starts when BUSY goes high and the switch armature begins to move. There is a 16 ms period until the armature reaches the specified output channel. There is a 16 ms period for each switched channel, including duplex and blocked channels. During this period, optical output is invalid; optical noise may appear on various output channels as the armature rotates.

The third time-period is called the debounce period. It ends when the armature is steady, the switch has established a valid optical connection, and BUSY goes low. The debounce period lasts for 300 ms.

Switching time is the sum of the second and third time-periods. For example:

Switch from Channel 15 to Channel 1 (1 x N Configuration) Switches through 14 channels

(14 x 16 ms) + 300 ms = 524 ms

Switch from Channel 2 to Channel 6 (2 x N Blocking Configuration) Switches through 2 x 4 (8) channels

(8 x 16 ms) + 300 ms = 428 ms

SM8000 Series Operation

33

Image 33
Contents SM8000 Series VXI Technology, Inc Table of Contents Control Modes VXI Technology, Inc SM8000 Series Preface Certification Steve Mauga, QA Manager EMCVXI Technology, Inc SM8000 Series Preface Terms and Symbols Service should only be performed by qualified personnelAvoid Electric Shock Support Resources VXI Technology, Inc SM8000 Series Preface Overview SectionSM8000 Series Optical Switch Controller Configurations SM8001 / SM8002 MULTI-CHANNELSWITCHESDuplex 1 x N PDL6 SM8001 / SM8002 Multi Switch SpecificationsSpdt SM8003 Prism SwitchesPDL3 SM8003 Prism Switch SpecificationsPDL SM8101 / SM8102 Optical AttenuatorsCalculating System Power and Cooling Requirements Setting the Chassis Backplane JumpersIntroduction Setting the Logical Address ExampleMSB LSB Selecting the Extended Memory Space Cleaning Optical Connectors Mating Optical ConnectorsOptical Connections General Description SM8001 / SM8002 Multi-Channel SwitchesSM8003 Prism Switches SM8003 Prism SwitchesSM8101 / SM8102 Optical Attenuators Attenuator DiagramResetting the Switch OperationRelay Registers Output Channel Selection N Switch Configuration Common Active Channel Duplex 1 x N Switch ConfigurationN Blocking Switch Configuration N Non-Blocking Switch Configuration 8MULTI-SWITCH Timing Calculating Switching TimeSM8003 Prism Switches Control Modes Starting the DeviceUncalibrated Operation Move-To-Absolute-Step Calibrated OperationError Status Busy SignalResetting the Device Commanding the DevicesAddressing Register AccessOffset Write Function Smip II Register MAP A16Logical Address Register Write Only ID Register Read OnlyDevice Type Register Read Only Status Register Read OnlyOffset Register Read and Write Control Register Write OnlySerial Number High Register Read Only Serial Number Low Register Read OnlyInterrupt Status Register Read Only Interrupt Control Register Read and WriteSubclass Register Read Only NVM Access Register Write NVM Access Register ReadBoard X, Y Used Address Register Read and Write Trace RAM Start High Register Read and WriteTrace RAM End Low Register Read and Write Trace RAM End High Register Read and WriteTrace RAM Address High Register Read and Write Trace RAM Address LOW Register Read and WriteTTL Trigger Polarity Register Write Only Open Trigger Select Register Write OnlyBusy Trigger Control Register Read and Write Trace RAM Control Register Read and WriteTrigger Advance Register Write Only Board Busy Register Read OnlyReserved Registers Read and Write 1MB RAM Control Register Read and Write See Typical Optical Multi Switch OperationControl Register Delay Register Read and Write Plug-In LA+0x104 Command Register Write Only Address Register Write Only Relay Register Offset Device MemoryWriting to the Relay Registers Relay Register 00 Read and WriteRelay Optical Module’s Data Attenuation Level Register 02 thru 08 Read and WriteRegister 0A thru 0C Read Programming Examples Typical Optical MULTI-SWITCH Control ExampleWrite Typical Optical Attenuator Control ExampleVXI Technology, Inc Read Example Write ExampleCommand Transmit Data Receive Data Byte Byte Count Command SET31h 30h35h 32h80h 6Ch82h 81h89h 83h8Bh 8Ah8Dh 8Ch8Eh 90h Recommends That the Optical MODULE’SConvert to hexadecimal A2h 96hVXI Technology, Inc SM8000 Series Programming Index VXIbus

SM8000 specifications

The VXI SM8000 is a versatile and robust modular instrumentation platform that is designed for various testing applications in industries such as aerospace, telecommunications, and military. This advanced test equipment is part of the VXI (Versatile Instrumentation System) standards, which allow for high-speed data acquisition, processing, and analysis.

One of the main features of the VXI SM8000 is its modular architecture, which enables users to configure the system according to their specific testing needs. This flexibility means that users can integrate various modules, including signal generators, oscilloscopes, and digital multimeters, making the system adaptable to a wide range of applications. The modular design also ensures scalability, allowing for easy expansion as test requirements grow.

The VXI SM8000 supports high-speed communication via its advanced backplane design. This design features multiple data buses that facilitate fast communication between modules, ensuring minimal latency and enhanced performance during testing. Moreover, the system is built to accommodate high-density modules, maximizing the amount of test parameters that can be handled simultaneously.

The SM8000 boasts enhanced signal processing capabilities thanks to its digital signal processing (DSP) technology. This feature enables real-time analysis and processing of signals, which is crucial for applications that require rapid feedback and adjustments. Additionally, the system is equipped with high-resolution analog-to-digital converters, ensuring precise measurement and analysis.

One of the key characteristics of the VXI SM8000 is its reliability. Built with robust materials and advanced engineering, the system is designed to endure rigorous testing environments and extreme operating conditions. This durability ensures consistent performance over time, making it a reliable choice for critical applications.

Furthermore, the VXI SM8000 is compatible with various software platforms, enabling seamless integration into existing testing environments. It supports programming languages like LabVIEW and MATLAB, allowing engineers to develop customized test scripts and configurations easily.

In summary, the VXI SM8000 is a powerful and flexible test system that combines modularity, high-speed communication, advanced signal processing, and compatibility with industry-standard software. Its reliability and scalability make it an ideal choice for professionals seeking a comprehensive testing solution across various sectors.