Dialogic DSI SPCI Network Interface Boards manual Example, Inotify module id

Page 110

8 Host Utilities

-i<notify module id>

The module to which an indication is sent when the configuration is complete.

-d

Enable diagnostic tracing.

8.2.4Example

To run the s7_mgt utility as module ID 0xdf with the file my_config.txt as its configuration file and notifying the module 0xef on completion, the command is:

s7_mgt -m0xdf -kmy_config.txt -i0xef

110

Image 110
Contents Dialogic DSI Spci Network Interface Boards MarchCopyright and Legal Notice Contents Configuration Command Reference Message ReferenceTables Host Utilities 108Revision History Introduction Related DocumentationCapability SpecificationProduct Identification License ButtonsProtocol Dimensioning CapacityInstallation IntroductionBoard Option Switch / Link Settings Hardware configurationSoftware Installation for Windows Installing Development Package for WindowsName Description Files Installed on a System Running WindowsStarting the Windows Device Driver Clearing Windows 2000 Install Wizard Removing Development Package for Windows Software Installation for LinuxInstalling Development Package for Linux Files Installed on a System Running Linux Device Drivers from Source CodeVerifying Device Driver Loading Software Installation for SolarisInstalling the Development Package for Solaris An example message isFiles Installed on a System Running Solaris Solaris 10 Additional CommandsNon-serviced interrupts reports Solaris 9 Interface Name CheckingSystem has to be rebooted to force the change to take effect Removing the Development Package for SolarisOverview Configuration and OperationTypical Telephony Systems Configurations System StructureIsdn User Part Following abbreviations are used in the tableHost Processes and Utilities Telephony User PartSystem Configuration System Configuration File SyntaxGenerating a System Configuration File For Linux, these Forkprocess commands are mandatory For Solaris, these Forkprocess commands are mandatoryProtocol Configuration Using Individual Messages Protocol ConfigurationProtocol Configuration using the s7mgt utility Page Parameters are as described below Board Information DiagnosticsBoard Diagnostics Hardware Parameters Parameter DescriptionGeographic Addressing Watchdog TimerUsing the CT bus Switching Model Static InitializationDynamic Operation Example Code Building and Sending SclistenMSG Page To run the system within the current console, enter Program ExecutionProgram Execution under Windows Program Execution under Linux To run it in the background enterProgram Execution under Solaris Developing a User ApplicationNmake /f ctu.mnt Hardware Control Messages General Configuration MessagesMessage Reference Message Summary Table MTP Interface MessagesEvent Indication Messages Message Summary0x3e18 General Configuration Messages SSD Reset RequestStatus Response Board Reset RequestNumboards Codefile Parameter Description BoardtypePhyid RunmodeBoard Status Indication FormatDescription Event Type Board Configuration RequestField Name Meaning Type MGTMSGCONFIG0 0x7F10 Src Value MeaningMaxsiflen Isolated from the other boards using the CT bus. The CT bus Parameter DescriptionMessage Reference Bit Data Rate Value Description Major revision identifier for the object being queried General Module Identification MessageParameter Description Majrev MinrevRead Board Info Request Message TextSPCI2S or SPCI4 board Field Name Meaning Type Mgtmsgrbrdinfo 0x6f0d SrcValue Mnemonic Meaning Swb BoardrevSwa PrommajrevHardware Control Messages LIU Configuration RequestField Name Meaning Type Liumsgconfig 0x7e34 Dst Mvdtaskid RspreqLine coding technique taken from the following table LiutypeLinecode FrameformatFaw CrcmodeBuildout NfawRaigen Description RaigenClearmask Field Name Meaning Type Liumsgcontrol 0x7e35 LIU Control RequestParameter Description Aisgen Loopmode Description Diagnostic loop back mode taken from the following tableLoopmode LIU Read Configuration Request LIU Read Control Request LIU State Request Offset Size Name StateCurrent state of the LIU from the following table LIU CT bus Initialization RequestParameter Description State State DescriptionTsmask Parameter Description LiuidScchannel Field Name Meaning Type Mvdmsgscdriveliu 0x7e18 SrcValue Mnemonic Description 0xff None Setup failed ModeCT bus Listen Request Offset Size Name Liuid Timeslot ScchannelTimeslot MvipinvalidtimeslotFixed Data Output Request Offset Size Name Liuid Timeslot PatternReset Switch Request PatternCT bus Connect Request Field Name Meaning Mvdmsgscconnect 0x7e1fLocalslot If a parameter is not required, it must be set to zeroLocalstream CT bus speed Source Slot Range SourcestreamSourceslot Deststream DestslotField Name Meaning Type Mvdmsgcnfclock 0x7e20 Src Configure Clock RequestParameter Description Busspeed Pllclksrc Value Clock ModeClkmode Value Bus speed No changeValue NETREF1 clock Mode Ref1modeConfigure Clock Priority Request Field Name Meaning Type Mvdmsgclockpri 0x7e21 SrcParameter Description Liunpri Event Indication Messages 2 s7mgt Completion Status Indication Parameter Description Board StatusParameter Description Completion Status Result of initial configuration coded as followsClock Event Indication Field Name Meaning Type Mvdmsgclkind 0x0e23 SrcParameter Description Event ID Status field in the message header is coded as follows LIU Status IndicationLiustatus Field Name Meaning Type Mvdmsgliustatus 0x0e01 Liuid SrcError Indication Value Mnemonic StateParameter Description Error Code Error Code is coded as shown in the following table6 MTP2 Level 2 State Indication Parameter Description Link StateEvent Code is coded as shown in the following table 7 MTP2 Q.752 Event IndicationParameter Description Event Code Onset of signaling link congestion Excessive delay of acknowledgementExcessive error rate Suerm Abatement of signaling link congestion8 MTP3 Q.752 Event Indication Offset Size Name Len Event specific parametersValue Mnemonic Paramter Description MtpevajspokPhysical Interface Parameters Configuration Command Reference1 SS7BOARD Command Bit CT Bus Clocking Mode Liuconfig Command Runmode Protocols selected to Run on the BoardCrcmode CRC mode taken from the following table Frameformat Frame format taken from the following tableLiuscdrive Command BoardidScbuslisten Command Reserved1, reserved2 MTP Global ConfigurationMTP Parameters OptionsMTP Signaling Link MTP Link SetSlc LinkidLinkref BlinkNormls MTP RouteDpc Blink Serial PortSecondls UserpartmaskMTP User Part Global Isup ConfigurationIsup Parameters Isup Circuit Group Configuration Opc CicmaskUserinst VariantTUP Parameters Global TUP ConfigurationGlobal configuration parameters for the TUP module TUP Circuit Group Configuration Configuration parameters for a group of TUP circuits107 Ssds Command Line OptionsHost Utilities DescriptionMmodule id Kconfig fileS7mgt Example Inotify module id

DSI SPCI Network Interface Boards specifications

Dialogic DSI SPCI Network Interface Boards are highly advanced and versatile communication solutions tailored for the demands of modern telephony and multimedia applications. These boards are designed to efficiently process voice, data, and signaling, making them an essential component for businesses looking to enhance their communication capabilities.

One of the standout features of the Dialogic DSI SPCI boards is their ability to handle multiple telephony protocols. This flexibility allows users to connect to various network types, whether PSTN, VoIP, or legacy systems, ensuring seamless interoperability. The boards support industry-standard protocols such as ISDN, SS7, and SIP, enabling integrated communication across diverse platforms.

The technology behind the Dialogic DSI SPCI boards incorporates state-of-the-art digital signal processing (DSP). This powerful DSP architecture provides efficient encoding and decoding of voice and video signals, leading to enhanced call quality and reduced latency. Moreover, the DSP technology supports advanced codecs, ensuring that voice communication is clear and intelligible, even over bandwidth-limited connections.

Another significant characteristic of these boards is their scalability. Organizations can start with a single board and expand their telecommunication capabilities as their needs grow. This scalability makes them suitable for a wide range of applications, from small businesses to large enterprises, allowing for easy integration into existing infrastructures.

In addition to their powerful processing capabilities, Dialogic DSI SPCI boards also prioritize reliability and robustness. They are designed with a focus on fault tolerance, ensuring that telephony services remain uninterrupted even in the event of hardware failure. This resilience is critical for mission-critical applications where downtime can lead to significant revenue loss.

Furthermore, the boards feature extensive application development support. Developers can leverage the Dialogic API and various development kits to create custom telephony applications that meet specific business requirements. This programmability opens the door to innovative solutions, such as interactive voice response (IVR) systems, automated call distribution (ACD), and customer relationship management (CRM) integration.

In summary, Dialogic DSI SPCI Network Interface Boards are a cornerstone for organizations looking to innovate their telecommunication systems. With their support for multiple protocols, advanced DSP technology, scalability, reliability, and development support, these boards empower businesses to optimize their communication strategies and adapt to the evolving landscape of digital interaction.