Teledyne 3000TA Operational Theory, Introduction, Micro-Fuel Cell Sensor, Principles of Operation

Page 19

Trace Oxygen Analyzer

Operational Theory

 

 

 

Operational Theory

2.1 Introduction

The analyzer is composed of three subsystems:

1.Micro-Fuel Cell Sensor

2.Sample System

3.Electronic Signal Processing, Display and Control

The sample system is designed to accept the sample gas and

transport it through the analyzer without contaminating or altering the sample prior to analysis. The Micro-Fuel Cell is an electrochemical galvanic device that translates the amount of oxygen present in the sample into an electrical current. The electronic signal processing, display and control subsystem simplifies operation of the analyzer and accurately processes the sampled data. The microprocessor controls all signal processing, input/output and display functions for the analyzer.

2.2 Micro-Fuel Cell Sensor

2.2.1 Principles of Operation

The oxygen sensor used in the Model 3000T series is a Micro-Fuel Cell designed and manufactured by Analytical Instruments. It is a sealed plastic disposable electrochemical transducer.

The active components of the Micro-Fuel Cell are a cathode, an anode, and the 15% aqueous KOH electrolyte in which they are immersed. The cell converts the energy from a chemical reaction into an electrical current in an external electrical circuit. Its action is similar to that of a battery.

There is, however, an important difference in the operation of a battery as compared to the Micro-Fuel Cell: In the battery, all reactants are stored within the cell, whereas in the Micro-Fuel Cell, one of the reactants (oxygen) comes from outside the device as a constituent of the sample gas being analyzed. The Micro-Fuel Cell is therefore a hybrid between a battery and a true fuel cell. (All of the reactants are stored externally in a true fuel cell.)

 

 

 

Teledyne Analytical Instruments

7

Image 19
Contents Teledyne Analytical Instruments Model 3000TACopyright 2011 Teledyne Analytical Instruments 3000TA- EUTrace Oxygen Analyzer Specific Model InformationImportant Notice Safety Messages 3000TA- EU Vii Table of Contents Operation MaintenanceAppendix Model 3000TA Front Panel List of FiguresList of Tables Typical Applications Main Features of the AnalyzerIntroduction OverviewIntroduction 3000TA- EU Model DesignationsModel 3000TA Front Panel Front Panel Operator InterfaceRecognizing Difference Between LCD & VFD ∙ 50-Pin Equipment Interface Port Rear Panel Equipment InterfaceIntroduction 3000TA- EU Trace Oxygen Analyzer Operational Theory Operational TheoryIntroduction Micro-Fuel Cell SensorAnatomy of a Micro-Fuel Cell Operational Theory 3000TA- EUElectrochemical Reactions Effect of Pressure Calibration CharacteristicsSample System Characteristic Input/Output Curve for a Micro-Fuel CellPiping Layout and Flow Diagram for Standard Model Flow Diagram Electronics and Signal Processing3000TA Internal Electronic Component Location Block Diagram of the Model 3000TA-EU Electronics Operational Theory 3000TA- EU Mounting the Analyzer InstallationTrace Oxygen Analyzer Installation Unpacking the AnalyzerFront Panel of the Model 3000TA Installation 3000TA- EUGas Connections Rear Panel ConnectionsSample Electrical Connections Exhaust OUTEquipment Interface Connector Pin Arrangement ∙ Threshold Alarm Alarm Relay Contact Pins Pin Function Range ID Relay Connections 2.3 RS-232 Port Remote Probe ConnectionsCommands via RS-232 Input Testing the System Installing the Micro-Fuel CellPage Operation Using the Data Entry and Function ButtonsTrace Oxygen Analyzer Operation Operation 3000TA- EU Hierarchy of Functions and Sub functions System FunctionTracking Oxygen Readings During Calibration and Alarm Delay TRAK/HLD Auto-Cal Pswd Logout More Setting up an Auto-Cal Password Protection A a a Characters Available for Password Definition Logout System Self-Diagnostic Test Showing Negative Oxygen Readings Version ScreenZero and Span Functions Zero Cal Zero Settling Man ENT To Begin Span Cal Span Val 000008.00 ENTSpan UPMod # #### % Span Slope=#### ppm/s Span Failure Alarms FunctionAL-1AL-2 Choose Alarm Range Function Setting the Analog Output Ranges Fixed Range Analysis Analyze Function Signal OutputMED Operation 3000TA- EU Teledyne Analytical Instruments Storing and Handling Replacement Cells MaintenanceRoutine Maintenance Trace Oxygen Analyzer MaintenanceWhen to Replace a Cell Maintenance 3000TA- EURemoving the Micro-Fuel Cell Removing the Micro-Fuel Installing a New Micro-Fuel CellMaintenance 3000TA- EU Cell Warranty Fuse ReplacementInstalling Fuses System Self Diagnostic TestMajor Internal Components Troubleshooting CleaningTrace Oxygen Analyzer Maintenance Maintenance 3000TA- EU Teledyne Analytical Instruments Appendix Model 3000TA SpecificationsTrace Oxygen Analyzer Appendix Appendix 3000TA- EU Recommended 2-Year Spare Parts ListOrders should be sent to 19-inch Relay Rack Panel Mount Drawing ListFlow Rate Recommendations Application notes3000TA Examples Bypass Conversions Section I Product Identification Material Safety Data SheetSection II Physical and Chemical Data Section IV Health Hazard Data Appendix 3000TA- EU Section III -Physical HazardsSection VI Handling Information
Related manuals
Manual 19 pages 17.56 Kb

3000TA specifications

The Teledyne 3000TA is an advanced telemetry system designed for high-performance applications in various industries such as aerospace, automotive, and research. This innovative device combines cutting-edge technologies with user-friendly features, making it an essential tool for engineers and scientists alike.

One of the standout features of the Teledyne 3000TA is its robust data acquisition capabilities. It offers a high sampling rate, which allows users to capture rapid changes in measurements accurately. This is particularly beneficial for applications that require real-time data analysis and decision-making, such as testing the performance of new aircraft components or monitoring engine behavior under different loads.

The 3000TA integrates multiple sensor interfaces, enabling it to connect seamlessly with various types of sensors, including temperature, pressure, and strain gauges. This versatility makes it suitable for a wide range of testing scenarios, from structural analysis to environmental monitoring. Users can customize the system to fit their specific needs, significantly enhancing its functionality.

Another significant advantage of the Teledyne 3000TA is its advanced wireless communication technology. By employing protocols like Bluetooth and Wi-Fi, it allows for remote data monitoring and access, which improves safety and convenience during testing processes. Engineers can easily gather data from hazardous environments without being physically present, ensuring both efficiency and safety.

The device is also equipped with an intuitive user interface, which simplifies the setup and operation processes. The touchscreen display provides real-time data visualizations and easy navigation through various menus, making it accessible even to those new to telemetry systems. This user-centric design reduces the learning curve and enhances overall productivity.

In terms of data integrity, the Teledyne 3000TA features robust error-checking and validation protocols. These built-in safeguards ensure that the data collected is accurate and reliable, which is crucial for making informed decisions based on telemetry data.

The system's compact and lightweight design ensures portability, allowing for use in various fields and environments. This flexibility enhances its appeal for field applications, where space and weight can be significant constraints.

In summary, the Teledyne 3000TA stands out as a versatile and reliable telemetry solution, combining high-performance data acquisition, advanced communication technologies, and user-friendly features. Its application across multiple industries makes it an invaluable tool for professionals seeking to optimize their testing and analysis processes.