Lincoln Electric SVM125-A Current Range Selector, Fine Current Adjustment, Engine Idler Circuit

Page 48

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

E-4

E-4

THEORY OF OPERATION

FIGURE E.4 – CURRENT RANGE SELECTOR, FINE CURRENT ADJUSTMENT AND ENGINE IDLER CIRCUIT

 

ON LATER MODELS

 

 

 

 

 

 

 

 

 

PROTECTION AND IDLER CIRCUITS

 

 

 

 

 

 

 

 

 

ARE ON ONE PC BOARD

 

 

 

 

 

 

 

 

 

PROTECTION

 

 

 

SELECTOR

 

 

 

 

 

RELAY

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH

 

 

 

 

 

 

 

 

 

 

 

 

REED

 

 

 

 

IDLER

 

 

 

 

 

RELAY

NEGATIVE

 

 

BOARD

 

 

 

 

 

CR2

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TERMINAL

 

 

 

 

 

 

 

 

115 & 230VAC

 

 

 

 

 

 

 

 

 

 

RECEPTACLES

 

 

 

 

IDLER

 

 

 

 

 

 

 

 

 

SOLENOID

 

 

 

 

 

 

 

 

OIL

OIL

 

 

GENERATOR

 

 

 

 

 

TEMPERATURE

PRESSURE

 

 

 

FRAME

 

 

 

 

 

SENSOR

SENSOR

 

 

 

 

 

CURRENT

 

 

FUEL

 

 

SERIES

 

 

 

 

 

 

SOLENOID

 

 

COILS

 

 

 

 

TRANSFORMER

 

 

RELAY

 

 

 

 

 

 

ALTERNATOR

STATOR

 

 

CR1

 

 

 

 

BRUSHES & COMMUTATOR

 

 

SWITCH

 

 

ARMATURE

 

 

SLIP

 

ENGINE

 

 

 

 

 

 

(NOT PRESENT

ENGINE

MECHANICAL

GENERATOR

 

ARMATURE

ROTOR

 

 

 

ON LATER MODELS)

 

 

 

 

 

 

 

 

 

IGNITION

 

 

COUPLING

 

 

 

SHAFT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALTERNATOR

 

 

 

 

 

 

 

RINGS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERPOLE

 

 

 

 

 

 

 

 

 

COILS

RESIDUAL

 

 

 

 

 

 

STARTER

 

 

MAGNETISM

FLASHING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOR

 

 

FIELD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SHUNT

 

 

 

 

 

 

 

 

 

WINDINGS

 

 

 

 

 

 

 

 

 

 

 

 

FIELD

 

 

 

BATTERY

 

 

 

 

 

RECTIFIER

 

 

 

 

 

 

 

GENERATOR

 

 

 

 

 

 

 

 

 

FIELD CONTROL

 

 

POSITIVE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

TERMINAL

Return to Section TOC

to Section TOC

Return to Master TOC

to Master TOC

ENGINE, GENERATOR ARMATURE AND FRAME, ALTERNATOR STA- TOR AND ROTOR (CONTINUED)

CURRENT RANGE SELECTOR

The selector switch acts as a coarse current adjust- ment by allowing for varying amounts of series wind- ings to be included in the welding current path. The series coils and selector switch are connected in series with the negative output terminal.

FINE CURRENT ADJUSTMENT

The field rheostat control functions as a fine output cur- rent adjustment by controlling the current through the shunt windings. This controls the amount of magnet- ism created in the shunt field windings. Open circuit weld voltage can also be controlled by the field rheo- stat control.

ENGINE IDLER CIRCUIT

The idler solenoid is mechanically connected to the engine governor linkage. When welding current is being drawn, the reed switch CR2 is closed. This sig- nals the idler PC board to release (deactivate) the idler solenoid, which then lets the machine go to a high speed condition. Also, when auxiliary power is being used, the current is passed through the current trans- former. This signals the idler PC board to release the idler solenoid.

When welding ceases or the auxiliary load is removed, a preset time delay of about 15 seconds starts. After approximately 15 seconds the idler PC board activates the idler solenoid, and the machine will return to a low speed condition.

Return

Return

NOTE: Unshaded areas of Block Logic Diagram are the subject of discussion.

CLASSIC II

Image 48
Contents Classic II TM Safety California Proposition 65 WarningsElectric Shock can kill Welding Sparks can cause fire or explosion IiiPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcMaster Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications ClassicSafety Precautions Location and VentilationStoring PRE-OPERATION Engine Service Muffler Undercarriages Spark ArresterElectrical Output Connections Welding Cable ConnectionsAuxiliary Power RECEPTACLES, PLUGS, and HAND-HELD Equipment Machine GroundingCircuit Breakers Classic Table of Contents Operation Section Safety Instructions OperationOperating Instructions General DescriptionOperational Features and Controls Design FeaturesRecommended Applications WelderWelding Capability LimitationsControls and Settings WELDER/GENERATOR ControlsControl of Welding Current Figure B.2 Current ControlsDiesel Engine Controls Return toEngine Operation Before Starting the EngineStarting the Engine Check and fill the engine fuel tankStopping the Engine Cold Weather StartingBREAK-IN Period Welding Operation General InformationIdler Operation After you finish welding Figure B.4 Welding Circuit Connections for Stick WeldingTable B.1 Range Settings for Wire SIZE/SPEED Auxiliary Power 13B-13Table B.2 Generator Power Applications Suggested Power Applications Running Watts Start-up WattsTable of Contents Accessories OPTIONS/ACCESSORIES Accessory Kit K703 Includes the followingTIG Welding Semiautomatic WeldingConnection of Lincoln Electric Wire Feeders Connection of the LN-7 to Classic II Using K867 UniversalAdapter see Figure C.1 Adapter Work Electrode Cable To LN-7 Figure C.3 Classic II/LN-25 Connection Diagram With K444-2 Remote Control K487-25 Table of Contents Maintenance Routine and Periodic Maintenance Engine MaintenanceFigure D.1 OIL Drain and Refill Figure D.2 Tightening the Cooling Blower Belt Daily or Before Starting EngineFirst 50 Hours Every 50 HoursBattery Maintenance Checking Specific GravityWELDER/GENERATOR Maintenance Idler MaintenanceFigure D.3 Major Component Locations Table of Contents Theory of Operation Section Theory of Operation ALTERNATOR, and ProtectionCircuits Excitation Flashing Auxiliary and Field Feedback CoilsInterpole and Series Coils Fine Current Adjustment Current Range SelectorEngine Idler Circuit DC Generator Machines Classic Table of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityTroubleshooting Guide Observe Safety GuidelinesDetailed in the beginning of this manual Shunt Field Winding Test Perform the Shunt Field Wind Troubleshooting & Repair Function Problems Troubleshooting & Repair Troubleshooting & Repair Troubleshooting & Repair Welding Problems Alternator Rotor Test Test DescriptionMaterials Needed Test Procedure Alternator Rotor TestFigure F.2 Measuring Rotor Resistance Classic Figure F.3 Measuring Rotor Resistance to Ground Classic Shunt Field Winding Test Shunt Field Winding Test PIN TAB Idler Solenoid Test Idler Solenoid Test Engine Throttle Adjustment Test Engine Throttle Adjustment Test Frequency Counter Method Oscilloscope MethodAdjusting Screw Locking NUT Flashing the Fields DescriptionProcedure Do not remove brush holderScope Settings Normal Open Circuit Voltage Waveform 115VAC SupplyHigh Idle no Load Fine Current Control Rheostat AT Maximum Normal Open Circuit DC Weld Voltage Waveform Machine Loaded Selector Switch AT Maximum Position Typical DC Weld Output Voltage WaveformAlternator Rotor Removal Replacement Replacement Alternator Rotor RemovalFuel Tank Return Line Mounting Hardware Cable Retainer Bowl Negative Output Terminal Copper Strap on Rear Side Figure F.14 Alternator Cover Removal Figure F.15 Rotor Removal Replacement Alternator Stator Removal and Replacement Procedure Alternator Stator RemovalVAC Receptacle Circuit Breaker Field Bridge Rectifier Genernator Brush HOLDER/COIL Cables Drill Spot STATOR/ENDBRACKET Mounting Bolt Generator Frame Removal and Replacement Generator Frame Removal Figure F.21 Generator Lead and Cable ConnectionsRope Sling ENGINE/GENERATOR Mounting Holes Generator Armature Removal and Replacement Generator Armature Removal Blower Paddle PADDLE/ARMATURE Mounting BoltsAC Auxiliary Power Receptacle Output Retest After RepairEngine Output Welder DC OutputElectrical Diagrams Section Classic Electrical Diagrams Wiring Diagram CodeRemote Control Optional Remote Control Optional Wire Feed Module Optional Wire Feed Thermostat * Machine Must not be Running J3 Sensor Idler PC Board M13708 Schematic Idler PC Board M13708 Components Idler PC Board l9902 Schematic Idler PC Board l9902 Components

SVM125-A specifications

The Lincoln Electric SVM125-A is a versatile and highly efficient welding machine that has gained significant recognition in the welding industry. Designed for both professionals and enthusiasts, this machine combines advanced technology with user-friendly features to deliver outstanding performance in a range of welding applications.

One of the standout features of the SVM125-A is its Inverter Technology. This cutting-edge technology allows for lightweight and compact design, making the machine highly portable. The inverter technology also provides a steady arc, which is crucial for achieving clean, high-quality welds. With a duty cycle of 125 amps at a 60% duty cycle, this welding machine can handle a variety of materials and thicknesses, from thin sheet metal to heavier structural components.

The SVM125-A supports multiple welding processes, including MIG, stick, and TIG welding. This versatility makes it an ideal choice for diverse welding tasks, whether you're working in a fabrication shop, doing repair work, or engaged in hobbyist projects. The machine features easy switch functionality, allowing users to quickly shift between welding processes without complicated setup.

Another notable characteristic is the machine's user-friendly interface. The intuitive control panel includes clear indicators and knobs that allow for easy adjustments of voltage and wire feed speed. This design is especially helpful for novice welders, providing them with the confidence to make adjustments as needed and ensuring optimal weld quality.

Safety is also a priority with the SVM125-A. The machine is equipped with thermal overload protection, which automatically shuts it down in case of overheating, preventing damage to the unit and ensuring operator safety. Additionally, the machine features a robust construction that emphasizes durability, making it suitable for demanding work environments.

Portability is enhanced through its lightweight design, and the built-in carrying handle makes it easy to transport from one job site to another. The SVM125-A is also compatible with a variety of welding accessories, further increasing its adaptability and functionality.

In conclusion, the Lincoln Electric SVM125-A stands out as a well-rounded welding machine that integrates advanced technology with user-friendly features. Its versatility in welding processes, robust design, and emphasis on safety and usability make it a valuable tool for welders at all skill levels. Whether for professional use or personal projects, the SVM125-A is a reliable choice that delivers exceptional performance and quality.