Lincoln Electric IM702-A manual Making a TIG Weld with AN Amptrol

Page 27

B-12

OPERATION

B-12

 

 

 

MAKING A TIG WELD WITH AN AMPTROL

1.Install welding equipment per Section A-5.

2.Setup controls per Section B-10.

3.Turn on the shielding gas supply, and torch coolant

input supply (if used).

Note: The Precision TIG Under-Cooler (or Water Solenoid connected to the Cooler receptacle) runs with the Fan-As-Needed machine cooling fan (See Maintenance Section D), so the cooler fan and water pump will also not run continuously in idle, but will run while welding.

4.With the torch held safely away from everything, close the Arc Start Switch of the Amptrol and set the gas flow meter. Then open the switch. The welder is now ready for welding.

5.Position the tungsten electrode at the start of the weld at a 65° to 75° angle with the horizontal, in the direction of pushing travel, so that the electrode is approximately 1/8" (4 mm) above the work piece.

Close the arc start switch. This opens the gas valve to automatically purge air from the hose and torch, then shields the arc strike area. After the 0.5 sec- ond preflow time, the high frequency becomes available to strike the arc. When the arc strikes the torch coolant (if used) starts to flow. Also, if welding DC- TIG, the high frequency shuts off just after the arc strikes.

6.Hold the arc start switch closed at minimum Amptrol Start level (See Section B-10) until an arc is estab- lished, then increase the output to the desired weld- ing level and push the torch in the direction of trav- el.

7.At the end of the weld, decrease the Amptrol output to the crater-fill level before releasing the arc start switch to start the Postflow time. Hold the torch gas shielding over the solidifying weld crater while post- flow time expires and the gas valve reopens. The torch coolant (if used) continues to flow for up to 8 minutes after the arc goes out (with the Fan-As- Needed feature) to assure torch cooling.

Repeat steps 5 through 7 to make another weld.

RECOMMENDED ELECTRODE AMPERAGE RANGES - PRECISION TIG 275

SMAW Process

ELECTRODE

 

 

POLARITY

 

3/32"

 

 

1/8"

 

 

 

5/32"

 

 

Fleetweld 5P, Fleetweld 5P+

 

DC+

 

40 - 70

 

75 - 130

 

 

90 - 175

 

 

Fleetweld 180

 

 

DC+

 

40 - 80

 

55 - 110

 

 

105 - 135

 

 

Fleetweld 37

 

 

DC+

 

70 - 95

 

100 - 135

 

 

145 - 180

 

 

Fleetweld 47

 

 

DC-

 

75 - 95

 

100 - 145

 

 

135 - 200

 

 

Jet-LH MR

 

 

DC+

 

85 - 110

 

110 - 160

 

 

130 - 220

 

 

Blue Max Stainless

 

 

DC+

 

40 - 80

 

75 - 110

 

 

95 - 110

 

 

Red Baron Stainless

 

 

DC+

 

40 - 70

 

60 - 100

 

 

90 - 140

 

 

Mild steel procedures are based on recommended procedures listed in C2.10 8/94 and the maximum rating of the PRECISION TIG 275

 

 

Excaliber 7018 procedures are based on Jet-LH 78 MR

 

 

 

 

 

 

 

 

 

 

 

 

Blue Max procedures are based on C6.1 6/95

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Red Baron Procedure are based on ES-503 10/93

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GTAW Process

 

 

 

 

 

 

 

 

Electrode Polarity

 

DC-

 

 

AC*

 

 

 

 

Approximate Argon

 

Electrode Tip Preparation

Sharpened

 

Balled

 

 

 

 

Gas Flow Rate

 

Electrode Type

 

 

 

 

 

 

 

 

 

EWZr

 

 

 

C.F.H. (l/min.)

 

 

EWTh-1, EWCe-2

 

 

 

 

EWTh-1, EWTh-2

 

 

 

 

 

 

 

 

EWTh-2, EWLa-1

 

 

EWP

 

EWCe-2, EWLa-1

 

 

 

 

Stainless

Electrode Size (in.)

 

EWG

 

 

 

 

 

 

EWG

 

Aluminum

Steel

.010

 

Up to 15 A.

 

Up to 15 A.

 

 

Up to 15 A.

 

3-8

(2-4)

3-8

(2-4)

.020

 

Up to 15 A.

 

10 to 15 A.

 

 

5 to 20 A.

 

5-10

(3-5)

5-10

(3-5)

.040

 

Up to 80 A.

 

20 to 30 A.

 

 

20 to 60 A.

 

5-10

(3-5)

5-10

(3-5)

1/16

 

Up to 150 A.

 

30 to 80 A.

 

 

60 to 120 A.

 

5-10

(3-5)

9-13 (4-6)

3/32

 

Up to MAX. A.

 

60 to 130 A.

 

 

100 to 180 A.

 

13-17 (6-8)

11-15 (5-7)

1/8

 

 

 

X

 

100 to 180 A.

 

 

160 to 250 A.

 

15-23

(7-11)

11-15

(5-7)

Tungsten electrodes are classified as follows by the American Welding Society (AWS):

 

 

 

 

 

 

 

 

 

Pure

EWP

green

 

 

 

 

 

 

 

 

 

 

 

 

+1% Thoria

EWTh-1

yellow

 

 

 

 

 

 

 

 

 

 

 

 

+2% Thoria

EWTh-2

red

 

 

 

 

 

 

 

 

 

 

 

 

+2% Ceria

EWCe-2

.....orange

 

 

 

 

 

 

 

 

 

 

 

 

+1.5% Lanthana

EWLa-1

black

 

 

 

 

 

 

 

 

 

 

 

 

+0.15 to 0.40% Zirconia

EWZr

brown

 

 

 

 

 

 

 

 

 

 

 

 

Ceriated Tungsten is now widely accepted as a substitute for 2% Thoriated Tungsten in AC and DC applications.

*Balanced Wave, Unbalanced Wave requires derating of the electrode.

PRECISION TIG 275

Image 27
Contents Precision TIG California Proposition 65 Warnings SafetyElectric Shock can kill Cylinder may explode if damaged Sûreté Pour Soudage a L’Arc Précautions DE SûretéThank You Table of Contents Installation Rated Input Single Phase onlyPrecision TIG Additional Output Capacity Recommended Input Wire and Fuse SizesPhysical Dimensions Temperature RangesSafety Precautions Input and Grounding Connections Work Cable Connection Stick Electrode Cable ConnectionOutput CABLES, Connections and Limitations Figure A.2 TIG Torch ConnectionFigure A.3 Auxiliary Power ConnectionsFigure A.4 Robotic Interface ConnectionWelding Sparks OperationProduct Description Pipe ThawingEquipment Limitations Recommended Processes and EquipmentRecommended Processes Process LimitationsFigure B.1 Control Panel Controls and SettingsOperation Advanced Panel Controls Do not USE 4-STEP if Using AN Amptrol RemoteOperation Internal SET UP Controls Stick Welding FeaturesTIG Welding Features Figure B.3 Figure B.4 TIG Weld Cycle Chart Setup Guidelines for TIG Welding with AN AmptrolUsing the Start Pedal Foot Amptrol K870-1 Figure B.5 Recommended Electrode Amperage Ranges Precision TIG Making a TIG Weld with AN AmptrolOptional Equipment AccessoriesFactory Installed Options Field Installed OptionsOverload Protection MaintenanceSafety Precautions Routine and Periodic MaintenanceUNDER-COOLER Service Service ProceduresComponent Access Spark GAP AdjustmentHOW to USE Troubleshooting Guide TroubleshootingSymptoms Output ProblemsCourse of Action GAS Problems Meter ProblemsHI-FREQ Problems Preset & Output Control Problems TIG Welding Problems Stick Welding ProblemsTIG Problems Precision TIG 275 Wiring Diagram for Code SCR3 Enhanced Diagrams Dimension Print K1826-1 DOMESTIC, K1826-2 Canada and K1827-1 Export Precision TIG Warnung Aviso DE

IM702-A specifications

The Lincoln Electric IM702-A is a versatile and innovative welding machine that has garnered attention for its advanced features and robust performance. Designed for various welding applications, the IM702-A is a go-to choice for professionals in the industry, offering precision, reliability, and ease of use.

One of the standout characteristics of the IM702-A is its advanced inverter technology. This allows for a lightweight and compact design, making it easier to maneuver in tight spaces compared to traditional welding machines. The inverter technology also contributes to energy efficiency, reducing power consumption without compromising on performance.

The IM702-A features a multi-process capability, enabling it to perform MIG, TIG, and Stick welding with ease. This versatility makes it ideal for a wide range of projects, from industrial manufacturing to home repairs. Users can seamlessly switch between different welding processes, enhancing productivity and streamlining workflow.

In terms of user interface, the Lincoln Electric IM702-A is designed with convenience in mind. It boasts a digital display that provides real-time information on welding parameters, making it easier for operators to monitor and adjust settings as needed. The intuitive controls are user-friendly, allowing even novice welders to achieve professional-quality results.

The machine also includes advanced weld control features, such as precise amperage and voltage adjustments. These controls ensure that users can achieve optimal settings for different materials and thicknesses, resulting in clean, strong welds. Additionally, the IM702-A is equipped with an automatic voltage adjustment feature, which helps maintain consistent performance under varying input conditions.

Durability is another key selling point for the IM702-A. Built with high-quality materials and engineering, this welding machine is designed to withstand the rigors of daily use in demanding environments. Its rugged construction provides reliability and longevity, ensuring that it remains a valuable asset in any workshop.

Lastly, safety is a priority in the design of the IM702-A. It includes several built-in safety features, such as thermal overload protection and a stabilized arc performance that reduces the risk of arc blow, protecting both the operator and the equipment.

Overall, the Lincoln Electric IM702-A stands out in the welding market due to its advanced technologies, multi-process capabilities, user-friendly interface, and robust safety features, making it an excellent choice for professional welders seeking high-quality performance and versatility.