OPERATION | ||
|
|
|
TIG WELDING
The TOUCH START TIG setting of the MODE switch is for DC TIG (Tungsten Inert Gas) welding. To initiate a weld, the CONTROL dial is first set to the desired current and the tungsten is touched to the work. During the time the tungsten is touching the work there is very little voltage or current and, in general, no tungsten contamination. Then, the tungsten is gently lifted off the work in a rocking motion, which establishes the arc.
The ARC CONTROL is not active in the TIG mode. To STOP a weld, simply pull the TIG torch away from the work. When the arc voltage reaches approximately 30 Volts the arc will go out and the machine will reset the cur- rent to the Touch Start level. To reinitiate the arc, retouch the tungsten to the work and lift. Alternatively, the weld can be stopped by releasing the Amptrol or arc start switch.
The Ranger 250 can be used in a wide variety of DC TIG welding applications. In general the ‘Touch Start’ feature allows contamination free starting without the use of a Hi- frequency unit. If desired, the
Ranger 250 settings when using the
•Set the MODE Switch to the TOUCH START TIG setting.
•Set the "IDLER" Switch to the "AUTO" position.
•Set the "WELDING TERMINALS" switch to the "REMOTELY CONTROLLED" position. This will keep the "Solid State" contactor open and provide a "cold" electrode until the Amptrol or Arc Start Switch is pressed.
When using the TIG Module, the OUTPUT control on the Ranger 250 is used to set the maximum range of the CURRENT CONTROL on the TIG Module or an Amptrol if connected to the TIG Module.
WIRE WELDING-CV
Connect a wire feeder to the Ranger 250 according to the instructions in INSTALLATION INSTRUCTIONS Section.
The Ranger 250 in the
Listed below are some wires suitable for use on this machine:
•Innershield -
•Outershield -
•Solid wires for MIG welding
.045 (1.1 mm),
.045 (1.1 mm) Blue Max MIG 308 LS.
Contact your local authorized Lincoln Electric Distributor or the Lincoln Electric Company for specific wires used on certain applications with this machine.
TYPICAL CURRENT RANGES (1) FOR TUNGSTEN ELECTRODES(2)
Tungsten Electrode | DCEN | DCEP (+) | Approximate Argon Gas Flow |
| TIG TORCH |
| ||||
Diameter in. (mm) |
|
| Flow Rate C.F.H. ( l | /min.) |
| Nozzle Size (4), (5) | ||||
|
|
|
|
|
|
|
|
|
|
|
|
| 1%, 2% Thoriated | 1%, 2% Thoriated | Aluminum |
|
| Stainless Steel |
|
|
|
|
| Tungsten | Tungsten |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.010 | (.25) | (3) |
| #4, #5, #6 |
| |||||
0.020 | (.50) | (3) |
|
|
| |||||
0.040 | (1.0) | (3) |
|
|
| |||||
1/16 | (1.6) |
| #5, #6 |
| ||||||
3/32 | (2.4) |
| #6, #7, #8 |
| ||||||
1/8 | (3.2) |
|
|
| ||||||
5/32 | (4.0) |
| #8, #10 |
| ||||||
3/16 | (4.8) |
|
|
| ||||||
1/4 | (6.4) |
|
|
| ||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)When used with argon gas. The current ranges shown must be reduced when using argon/helium or pure helium shielding gases.
(2)Tungsten electrodes are classified as follows by the American Welding Society (AWS):
Pure | EWP |
1% Thoriated | |
2% Thoriated |
Though not yet recognized by the AWS, Ceriated Tungsten is now widely accepted as a substitute for 2% Thoriated Tungsten in AC and DC applications.
(3)DCEP is not commonly used in these sizes.
(4)TIG torch nozzle "sizes" are in multiples of 1/16ths of an inch:
# 4 = 1/4 in. | (6 mm) | |
# 5 | = 5/16 in. | (8 mm) |
# 6 | = 3/8 in. | (10 mm) |
# 7 | = 7/16 in. | (11 mm) |
# 8 | = _ in. | (12.5 mm) |
#10 = 5/8 in. | (16 mm) |
(5)TIG torch nozzles are typically made from alumina ceramic. Special applications may require lava nozzles, which are less prone to breakage, but cannot withstand high temperatures and high duty cycles.
RANGER 250