Agilent Technologies 664xA Traversing the Command Tree, Query Indicator, Message Unit Separator

Page 11
Query Indicator

Header Convention. In this manual, headers are emphasized with boldface type. The proper short form is shown in upper-case letters, such as DELay.

Header Separator. If a command has more than one header, you must separate them with a colon. (VOLT:PROT

OUTPut:PROTection:CLEar)

Optional Headers. The use of some headers is optional. Optional headers are shown in brackets, such as OUTPut[:STATe] ON. However, if you combine two or more message units into a compound message, you may need to enter the optional header. This is explained under "Traversing the Command Tree."

Query Indicator

Following a header with a question mark turns it into a query (VOLT? VOLT:PROT?). If a query contains a parameter, place the query indicator at the end of the last header (VOLT:PROT? MAX).

Message Unit Separator

When two or more message units are combined into a compound message, separate the units with a semicolon

(STATus:OPERation?;QUEStionable?).

Important

You can combine message units only at the current path of the command tree (see "Traversing the

 

Command Tree").

Root Specifier

When it precedes the first header of a message unit, the colon becomes a "root specifier". This indicates that the command path is at the root or top node of the command tree. Note the difference between root specifiers and header separators in the following examples:

OUTP:PROT:DEL .1

All colons are header separators

OUTP:PROT:DEL .1

The first colon is a root specifier

OUTP:PROT:DEL .l;:VOLT 12.5

The third colon is a root specifier

Message Terminator

A terminator informs SCPI that it has reached the end of a message. Three permitted messages terminators are:

Newline (<NL>), which is ASCII decimal 10 or hex 0A.

End or identify (<END>).

Both of the above (<NL><END>).

In the examples of this manual, there is an assumed message terminator at the end of each message. If the terminator needs to be shown, it is indicated as <NL> regardless of the actual terminator character.

Traversing the Command Tree

Figure 2-2 shows a portion of the subsystem command tree (you can see the complete tree in Figure 3-2). Note the location of the ROOT node at the top of the tree. The SCPI interface is at this location when:

The power supply is powered on.

A device clear (DCL) is sent to the power supply.

The interface encounters a message terminator.

The interface encounters a root specifier.

12 Remote Programming

Image 11
Contents July PROGRAMMING GUIDE GPIB DC POWER SUPPLIESAgilent Part No Microfiche Part NoPrinting History Safety GuidelinesLANGUAGE DICTIONARY ContentsGENERAL INFORMATION REMOTE PROGRAMMINGDescription of Subsystem Commands COMPATIBILITY LANGUAGE ERROR MESSAGESSTATUS REPORTING SCPI CONFORMANCE INFORMATIONUser’s Guide General InformationAbout this Guide Documentation SummaryAccessing Online Help Prerequisites for Using this GuideVXIplug&play Power Product Instrument Drivers Downloading and Installing the DriverConventions GPIB Capabilities Of The Power SupplyRemote Programming Introduction To SCPICommon Commands Types of SCPI CommandsSCPI Messages Structure of a SCPI MessageVOLT LEV PROT CURR Parts of a SCPI MessageFigure 2-1.Command Message Structure Message ComponentRoot Specifier Traversing the Command TreeQuery Indicator Message Unit SeparatorMoving Among Subsystems Figure 2-2.Partial Command TreeActive Header Path The Effect of Optional HeadersSCPI Data Formats Including Common CommandsSCPI Queries Value CouplingClass ExamplesListening Formats Table 2-2.Suffixes and MultipliersProgramming Voltage and Current Controlling the OutputDisable the output Enable the outputProgramming Status Saving and Recalling StatesWriting to the Display The GPIB Address System ConsiderationsProgramming the Digital I/O Port A direct primary address and a secondary address Error Handling DOS DriversAgilent BASIC Controllers Sample Program CodeController Using Agilent 82335A Interface Programming Some Power Supply Functions22 Remote Programming Programming Some Power Supply Functions continued1130 24 Remote Programming Language Dictionary Related CommandsCommon Commands Subsystem CommandsFigure 3-1.Common Commands Syntax Diagram Description Of Common Commands0 to Meaning and TypeDescription Query Syntax ESR?IDN? Related CommandsPSC 0 *PSC OPC?OPT? Power-onStatus Clear Device InitializationDescription Meaning and TypeDescription Bit Configuration of Status Byte Register STB?TST? Figure 3-2.Subsystem Commands Tree Diagram Description of Subsystem CommandsCalibration Commands ABORCURRENT:LEVEL 200 MA Current SubsystemCURR CURR TRIG CURR PROT STATDigital I/O Port Programming Chart Display SubsystemDIG DATA DISPenclosed in either single ‘ or double quotes DISP MODEDISP TEXT DISP TEXT DEFAULT MODEMEAS CURR? MEAS VOLT? Initiate SubsystemMeasure Subsystem INIT INIT:CONT0 or Output SubsystemOUTP OUTP PROT CLE OUTP PROT DELOUTP REL POL NORM OUTP RELOUTP REL POL OUTP REL 1 OUTP REL OFFSTAT OPER? Status SubsystemSTAT PRES Status Operation RegistersSTATUS OPERATION ENABLE? STAT OPER ENABSTAT OPER NTR STAT OPER PTR STAT QUES ENAB Status Questionable RegistersSTAT QUES? STAT:QUES:COND?corresponding Questionable Event register System CommandsSTAT QUES NTR STAT QUES PTR SYST ERR?TRIG Trigger SubsystemSYST LANG SYST VERS?VOLTAGE LEVEL 200 MV Voltage SubsystemTRIG SOUR VOLT VOLT TRIGCommand Command SummaryVOLT:PROT Command SummaryCommand Parameters Agilent Model and Value Characteristics in the Operating GuideProgramming Parameters ParameterOperation Status Group Power Supply Status StructureRegister Commands Status ReportingMeaning Table 4-2.Bit Configurations of Status RegistersSignal Figure 4-1.Power Supply Status ModelCLS *ESR? Questionable Status GroupStandard Event Status Group Table 4-3.Status Questionable CommandsStatus Byte Register Service Request Enable RegisterInitial Conditions At Power On Determining the Cause of a Service InterruptCaused By The PON Power-OnBitServicing an Operation Status Mode Event Table 4-4.Default Power On Register StatesTable 4-5.Generating RQS from the CC Event Monitoring Both Phases of a Status TransitionAdding More Operation Events Servicing Questionable Status EventsTechniques in ANSI/IEEE Std SCPI Command CompletionDFI Discrete Fault Indicator RI Remote InhibitSystem Error Messages Error MessagesPower Supply Hardware Error Messages Calibration Error Messages60 Error Messages SCPI Version SCPI Confirmed Commands1SCPI Approved Commands SCPI Conformance InformationNON-SCPICommands1 Compatibility Language Similar SCPI Table B-1.ARPS CommandsARPS Command1 Table B-1.ARPS Commands continued Description Index 68 Index Page Canada Agilent Sales and Support OfficeUnited States Latin America
Related manuals
Manual 70 pages 51.66 Kb Manual 142 pages 24.05 Kb

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.