Agilent Technologies 664xA Disp Mode, Disp Text, enclosed in either single ‘ or double quotes

Page 36
DISP:MODE

DISP:MODE

Switches the display between its normal metering mode and a mode in which it displays text sent by the user. The command uses the character data <CRD> format.

Command Syntax

DISPlay[:WINDow]:MODE NORMalITEXT

Parameters

<CRD>

NORMal TEXT

*RST Value

NORM

 

 

Examples

DISP:MODE NORM

DISPLAY:MODE NORMAL

 

DISPLAY:WINDOW:MODE TEXT

Query Syntax

DISPlay[:WINDow]:MODE?

Returned Parameters

<CRD>

NORMAL or TEXT

Related Commands

DISP DISP:TEXT

*RST

DISP:TEXT

Allows character strings to be sent to display. The characters will be displayed when the display mode is TEXT. The LCD has the following character set:

 

LCD Character Set

uppercase letters

A through Z (Case-sensitive entry)

digits

0 through 9

punctuation

_ “ $ < > + - / = ? . : ,

blank space

 

A display is capable of showing up to 12 characters. However, the three punctuation characters do not count toward the 12- character limit when they are preceded by an alphanumeric character. When punctuation characters are included, then the maximum number of characters (alphanumeric + punctuation) that can be displayed is 15. If it exceeds the display capacity, a message will be truncated to fit and no error message will be generated. If any character in the message is not a member of the above character set, the character will not be rejected but will be displayed as a "starburst" (all 16 segments of the character will light).

Command Syntax

DISPlay[:WINDow]:TEXT [:DATA] <STR>

Parameters

(See LCD character set)

*RST Value

‘ ‘

Examples

DISP:TEXT "DEFAULT_MODE"

 

DISPLAY:WINDOW:TEXT:DATA '533.2E-1VOLTS'

Query Syntax

DISPlay[:WINDow]:TEXT?

Returned Parameters

<STR> (Last programmed text string)

Related Commands

DISP DISP:MODE *RST

Note

IEEE Standard Digital Interface for Programmable Instrumentation requires that a string be

 

enclosed in either single (‘) or double (") quotes.

 

 

Language Dictionary 37

Image 36
Contents PROGRAMMING GUIDE GPIB DC POWER SUPPLIES Agilent Part NoMicrofiche Part No JulySafety Guidelines Printing HistoryContents GENERAL INFORMATIONREMOTE PROGRAMMING LANGUAGE DICTIONARYDescription of Subsystem Commands ERROR MESSAGES STATUS REPORTINGSCPI CONFORMANCE INFORMATION COMPATIBILITY LANGUAGEGeneral Information About this GuideDocumentation Summary User’s GuidePrerequisites for Using this Guide VXIplug&play Power Product Instrument DriversDownloading and Installing the Driver Accessing Online HelpGPIB Capabilities Of The Power Supply Remote ProgrammingIntroduction To SCPI ConventionsTypes of SCPI Commands SCPI MessagesStructure of a SCPI Message Common CommandsParts of a SCPI Message Figure 2-1.Command Message StructureMessage Component VOLT LEV PROT CURRTraversing the Command Tree Query IndicatorMessage Unit Separator Root SpecifierFigure 2-2.Partial Command Tree Active Header PathThe Effect of Optional Headers Moving Among SubsystemsIncluding Common Commands SCPI QueriesValue Coupling SCPI Data FormatsExamples Listening FormatsTable 2-2.Suffixes and Multipliers ClassControlling the Output Disable the outputEnable the output Programming Voltage and CurrentSaving and Recalling States Writing to the DisplayProgramming Status System Considerations Programming the Digital I/O PortThe GPIB Address A direct primary address and a secondary address DOS Drivers Agilent BASIC ControllersSample Program Code Error HandlingProgramming Some Power Supply Functions Controller Using Agilent 82335A InterfaceProgramming Some Power Supply Functions continued 22 Remote ProgrammingProgramming Some Power Supply Functions continued 24 Remote Programming Related Commands Common CommandsSubsystem Commands Language DictionaryDescription Of Common Commands Figure 3-1.Common Commands Syntax DiagramMeaning and Type Description0 to ESR? IDN?Related Commands Query SyntaxOPC? OPT?Power-onStatus Clear Device Initialization PSC 0 *PSCMeaning and Type DescriptionMeaning and Type STB? Bit Configuration of Status Byte RegisterTST? Description of Subsystem Commands Calibration CommandsABOR Figure 3-2.Subsystem Commands Tree DiagramCurrent Subsystem CURR CURR TRIGCURR PROT STAT CURRENT:LEVEL 200 MADisplay Subsystem DIG DATADISP Digital I/O Port Programming ChartDISP MODE DISP TEXTDISP TEXT DEFAULT MODE enclosed in either single ‘ or double quotesInitiate Subsystem Measure SubsystemINIT INIT:CONT MEAS CURR? MEAS VOLT?Output Subsystem OUTPOUTP PROT CLE OUTP PROT DEL 0 orOUTP REL OUTP REL POLOUTP REL 1 OUTP REL OFF OUTP REL POL NORMStatus Subsystem STAT PRESStatus Operation Registers STAT OPER?STAT OPER ENAB STAT OPER NTR STAT OPER PTRSTATUS OPERATION ENABLE? Status Questionable Registers STAT QUES?STAT:QUES:COND? STAT QUES ENABSystem Commands STAT QUES NTR STAT QUES PTRSYST ERR? corresponding Questionable Event registerTrigger Subsystem SYST LANGSYST VERS? TRIGVoltage Subsystem TRIG SOURVOLT VOLT TRIG VOLTAGE LEVEL 200 MVCommand Summary VOLT:PROTCommand Summary CommandCommand Parameters Characteristics in the Operating Guide Programming ParametersParameter Agilent Model and ValuePower Supply Status Structure Register CommandsStatus Reporting Operation Status GroupTable 4-2.Bit Configurations of Status Registers SignalFigure 4-1.Power Supply Status Model MeaningQuestionable Status Group Standard Event Status GroupTable 4-3.Status Questionable Commands CLS *ESR?Service Request Enable Register Initial Conditions At Power OnDetermining the Cause of a Service Interrupt Status Byte RegisterThe PON Power-OnBit Servicing an Operation Status Mode EventTable 4-4.Default Power On Register States Caused ByMonitoring Both Phases of a Status Transition Adding More Operation EventsServicing Questionable Status Events Table 4-5.Generating RQS from the CC EventSCPI Command Completion DFI Discrete Fault IndicatorRI Remote Inhibit Techniques in ANSI/IEEE StdError Messages Power Supply Hardware Error MessagesCalibration Error Messages System Error Messages60 Error Messages SCPI Confirmed Commands1 SCPI Approved CommandsSCPI Conformance Information SCPI VersionNON-SCPICommands1 Compatibility Language Table B-1.ARPS Commands ARPS Command1Similar SCPI Table B-1.ARPS Commands continued Table B-1.ARPS Commands continued Index 68 Index Page Agilent Sales and Support Office United StatesLatin America Canada
Related manuals
Manual 70 pages 51.66 Kb Manual 142 pages 24.05 Kb

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.