Agilent Technologies 6834B, 6814B, 6843A, 6813B, 6811B manual MEASureARRayVOLTageFLUCtuationsALL?, 174

Page 174

E - IEC Mode Command Summary

MEASure:ARRay:VOLTage:FLUCtuations:ALL?

This query measures voltage fluctuations in accordance with the IEC 868 standard. It is only available when IEC mode is selected with SYSTem:CONFigure. The parameter specifies the number of Pst integration periods during which data will be returned in response to the query.

This query returns the data structures associated with both the MEAS:ARR:VOLT:FLUC:FLIC query and the MEAS:ARR:VOLT:FLUC:PST query. The Pst structure includes flicker perceptibility values for the component percentiles making up Pst, the Pst value itself, various RMS voltage values (Dmax, Dc, and Dt), together with indices for these RMS values that give their approximate location in the RMS time series for the corresponding integration period.

An additional structure consisting of a 1024 point array of bins whose indices correspond to a set of logarithmically weighted ranges of instantaneous flicker is returned for each Pst integration period. The array covers a flicker perceptibility range of 0.01 to 10000 and the individual bins contain counts equal to the accumulated number of occurrences of flicker within the bin range during the Pst integration period. RMS voltage and instantaneous flicker values are returned once a second, while Pst data and the 1024 point arrays are returned once per Pst integration period. The data is always returned in order (ie the Pst summary data immediately follows the last array of RMS voltage and flicker values for a given integration period).

The total quantity of data returned by this query is demonstrated by the following example (assuming 50Hz operation): If CALCulate:INTegral:TIME specifies 10 minutes and <n> is set to 12, a 2 hour measurement is initiated (10 minutes times 12) and a total of 1,466,856 data points are returned (202 times 60 times 10 plus the 14 item Pst summary record plus 1024 log points all times 12 Pst integration periods).

This command is closely related to two similar commands that return different data (see MEAS:ARR:VOLT:FLUC:FLIC and MEAS:ARR:VOLT:FLUC:ALL). The figure below defines the structure of the data returned by this query:

174

Image 174
Contents Programming Guide Safety Summary Printing HistoryTable of Contents Language Dictionary System ConsiderationsMeasurement Subsystem Frequency Source Subsystem Function Source Subsystem Voltage Programming Examples 121Scpi Conformance Information Scpi Command TreeError Messages Elgar Model 9012 CompatibilityIndex IEC Mode Command Summary167 181Documentation Summary About this GuideEarlier AC Source Models Information about this Current modelScpi References Agilent VXIplug&play Power Products Instrument DriversExternal References Gpib ReferencesDownloading and Installing the Driver Accessing Online HelpSystem Requirements Page Gpib Address Gpib Capabilities of the AC SourceRS-232 Capabilities of the AC Source RS-232 Data FormatRS-232 Troubleshooting RS-232 Programming ExampleConventions Used in This Guide Types of Scpi CommandsIntroduction to Scpi Types of Scpi MessagesScpi Command Tree Root LevelActive Header Path Effect of Optional Headers Moving Among SubsystemsCoupled Commands Including Common CommandsUsing Queries Structure of a Scpi MessageCombining Message Units HeadersRoot Specifier Query IndicatorMessage Unit Separator Message TerminatorSuffixes and Multipliers Scpi Data FormatsNumerical Data Formats Character DataTypes of DOS Drivers System ConsiderationsAssigning the Gpib Address in Programs Agilent 82335A DriverError Handling Agilent Basic ControllersPage Language Dictionary IntroductionSubsystem Commands SubsystemCALibrateCURRentAC Calibration Subsystem CommandsSubsystem Syntax CalcurracCALibrateIMPedance CALibrateCURRentMEASureCALibrateDATA CALibrateLEVelCALibratePWMRAMP CALibratePASSwordCALibratePWMFREQuency CALibrateSAVECALibrateVOLTageDC CALibrateSTATeCALibrateVOLTageAC Calstat 1,6812 Calstat OFFCALibrateVOLTageOFFSet CALibrateVOLTagePROTectionCALibrateVOLTageRTIMe DISPlayMODE Display Subsystem CommandsDISPlay DISPlayTEXTInstrument Subsystem INSTrumentCOUPleInstcoup ALL INSTrumentNSELect INSTrumentSELect Measurement Subsystem Arrays MEASureARRayCURRent? FETChARRayCURRent?MEASureARRayCURRentHARMonic? FETChARRayCURRentHARMonic? MEASureARRayCURRentNEUTral? FETChARRayCURRentNEUTral? MEASureARRayVOLTage? FETChARRayVOLTage? MEASureARRayVOLTageHARMonic? FETChARRayVOLTageHARMonic? Measurement Subsystem Current MEASureCURRent? FETChCURRent?MEASureCURRentAC? FETChCURRentAC? MEASureCURRentACDC? FETChCURRentACDC?MEASureCURRentCREStfactor? FETChCURRentCREStfactor? MEASureCURRentHARMonic? FETChCURRentHARMonic?Parameters Examples MEASureCURRentHARMonicPHASe? FETChCURRentHARMonicPHASe? MEASureCURRentHARMonicTHD? FETChCURRentHARMonicTHD?MEASureCURRentNEUTral? FETChCURRentNEUTral? MEASureCURRentNEUTralAC? FETChCURRentNEUTralAC? MEASureCURRentNEUTralACDC? FETChCURRentNEUTralACDC?MEASureCURRentNEUTralHARMonic? FETChCURRentNEUTralHARMonic? MEASCURRNEUTHARMPHAS? Measurement Subsystem Frequency MEASureFREQuency? FETChFREQuency?Measurement Subsystem Power MEASurePOWer? FETChPOWer?MEASurePOWerAC? FETChPOWerAC? MEASurePOWerACAPParent? FETChPOWerACAPParent? MEASurePOWerACREACtive? FETChPOWerACREACtive?MEASurePOWerACPFACtor? FETChPOWerACPFACtor? MEASurePOWerACTOTal? FETChPOWerACTOTal? Measurement Subsystem Voltage MEASureVOLTage? FETChVOLTage?MEASureVOLTageAC? FETChVOLTageAC? MEASureVOLTageACDC? FETChVOLTageACDC? MEASureVOLTageHARMonic? FETChVOLTageHARMonic?MEASureVOLTageHARMonicPHASe? FETChVOLTageHARMonicPHASe? MEASureVOLTageHARMonicTHD? FETChVOLTageHARMonicTHD?Command Syntax Output SubsystemOUTPut OUTPutDFISOURce OUTPutCOUPlingOUTPutDFI Outpcoup DCOUTPutIMPedanceREACtive OUTPutIMPedanceOUTPutIMPedanceREAL OutpimprealOUTPutPROTectionCLEar OUTPutPROTectionDELayOUTPutPONSTATe Outpponstat RSTOUTPutTTLTrgSOURce OUTPutRIMODEOUTPutTTLTrg OutpttltSense Subsystem SENSeCURRentACDCRANGeSENSeWINDow SENSeSWEepOFFSetPOINtsSENSeSWEepTINTerval Senswind KbesSource Subsystem Current CURRentCURRentPEAK CURRentPEAKMODECurrpeakmode FIX CURRentPEAKTRIGgered CURRentPROTectionSTATeSource Subsystem Frequency FREQuencyFREQuencyMODE FREQuencySLEW FREQuencySLEWMODEFREQencySLEWTRIGgered FREQuencyTRIGgered Source Subsystem Function FUNCtionFuncmode FIX FUNCtionMODEFUNCtionTRIGgered Query Syntax SOURceFUNCtionSHAPeMODE?FUNCtionCSINusoid Funccsin Funccsin 10 THDQuery Syntax SOURceFUNCtionSHAPeCSINusoid? Source Subsystem List ListLISTCURRent Related Commands ListcurrLISTCOUNt LISTCURRentPOINts?LISTDWELlPOINts? Related Commands ListdwelLISTDWELl LISTFREQuencyLISTFREQuencySLEW LISTPHASeLISTFREQuencyPOINts? LISTFREQuencySLEWPOINts?Related Commands Listshap LISTPHASePOINts?Related Commands Listphas LISTSHAPeLISTTTLTrgPOINts? ListstepLISTTTLTrg Liststep OnceLISTVOLTageSLEW LISTVOLTageLISTVOLTagePOINts? Query Syntax SOURceLISTVOLTageLEVelPOINTs?LISTVOLTageOFFSetPOINts? LISTVOLTageSLEWPOINts?LISTVOLTageOFFSet LISTVOLTSLEWPOIN?LISTVOLTageOFFSetSLEW LISTVOLTageOFFSetSLEWPOINts?Query Syntax SOURceLISTVOLTageOFFSetSLEWPOINTs? Source Subsystem Phase PHASeSubsystem Syntax PHASeMODE PHASeTRIGgeredSource Subsystem Pulse PULSeCOUNtPULSeDCYCle PULSeHOLD Pulshold DcycPULSePERiod PULSeWIDThSource Subsystem Voltage VOLTage VOLTageTRIGgeredVolt VOLTageMODE VOLTageOFFSetVoltoffsmode FIX VOLTageOFFSetMODEVOLTageOFFSetTRIGgered Query Syntax SOURceVOLTageOFFSetMODE?Voltoffsslewmode Step VOLTageOFFSetSLEWVOLTageOFFSetSLEWMODE Query Syntax SOURceVOLTageOFFSetSLEWMODE?VOLTagePROTectionSTATe VOLTageOFFSetSLEWTRIGgeredVOLTagePROTection VoltprotstatVOLTageSENSeDETector VOLTageALCDETector Agilent 6814B, 6834B, 6843A Only Phase SelectableVOLTageRANGe RTIMeVOLTageSENSeSOURce VOLTageALCSOURce VOLTageSLEWINTernal EXTernal Voltslewmode Step VOLTageSLEWMODEVOLTageSLEWTRIGgered Query Syntax SOURceVOLTageSLEWMODE?STATusPRESet Status SubsystemSTATusOPERation? Bit Configuration of Operation Status RegistersSTATusOPERationENABle STATusOPERationCONDition?STATusOPERationNTRansition STATusOPERationPTRansition StatoperntrSTATusQUEStionableCONDition? Bit Configuration of Questionable Status RegistersSTATusQUEStionable? STATQUESEVEN?NR1 register value Related Commands STATusQUEStionableENABleQuery Syntax STATusQUEStionableENABle? STATusQUEStionableNTRansition STATusQUEStionablePTRansitionAgilent 6834B Only Phase Selectable STATusQUEStionableINSTrumentISUMmary?STATQUESINSTISUMCOND? STATusQUEStionableINSTrumentISUMmaryENABleSTATusQUEStionableINSTrumentISUMmaryCONDition? StatquesinstisumenabStatquesinstisumntr 101System Commands SYSTemCONFigureSystconf Norm SYSTemVERSion? SYSTemCONFigureNOUTputsSYSTemERRor? SystconfnoutSYSTemREMote SYSTemLANGuageSYSTemLOCal SYSTemRWLockTRACe Command Syntax Parameters Examples Query SyntaxTrace Subsystem DataTRACeDEFine DATADEFine Command Syntax Parameters Examples Related CommandsTRACeCATalog? DATACATalog? TRACeDELete DATADELeteTrigger Subsystem 107Abor ABORtINITiateSEQuence INITiateNAME INITSEQ1 Initname ACQTRIGger TRIGgerDELayINITiateCONTinuousSEQuence INITiateCONTinuousNAME 109TRIGgerSEQuence2SOURce TRIGgerSYNChronizeSOURce IMMediate PHASeTRIGgerSOURce Gpib device, *TRG, or GET Group Execute TriggerTRIGgerSEQuence3 TRIGgerACQuire TRIGgerSEQuence2PHASe TRIGgerSYNCHronizePHASeCommand Syntax Parameters RST Value Examples Query Syntax 111TRIGgerSEQuence3SOURce TRIGgerACQuireSOURce 112Common Commands Common Commands Syntax113 CLS Bit Configuration of Standard Event Status Enable RegisterCommand Syntax *CLS Parameters None ESEOPC ESR?IDN? Field InformationOPT? PSCRCL RST SRE Command Syntax SAV NRf Parameters ExampleSAV NR1 register binary valueTRG Bit Configuration of Status Byte RegisterSTB? TST?WAI Enabling the Output Power-on InitializationProgramming the Output OUTPut onVoltage Ranges Agilent 6814B/6834B/6843A only AC Voltage and FrequencyMaximum Voltage 122Voltage and Frequency Slew Rates Waveform ShapesUser-Defined Waveform Individual Phases Agilent 6834B onlyClipped Waveform 124Current Limit Selecting a PhaseProgramming the Output Phase 125DC Output Agilent 6811B/6812B/6813B only Peak Current Limit Agilent 6811B/6812B/6813B only126 VOLTageRANGe CURRent VOLTageLEVel, VOLTageOFFSet, and FUNCtionSHAPeVOLTageOFFSet 300VOLTage 127Programming Output Transients VOLTageRANGe CURRent 10VOLTageRANGe128 Transient System Model Model of Transient System 129Step and Pulse Transients Step Example130 List Transients Step131 LISTCOUNt Triggering Output ChangesScpi Triggering Nomenclature Sequence Form AliasOutput Trigger System Model Model of Output Triggers 133ABORt *RST *RCL Initiating the Output Trigger SystemSelecting the Output Trigger Source TRIGgerSEQuence1SOURce BUS TRIGgerTRANsientSOURce BUSSpecifying a Trigger Delay Synchronizing Output Changes to a Reference Phase Angle135 Single Triggers Generating Output TriggersSpecifying a Dwell Time for Each List Point Continuous TriggersMaking Measurements Voltage and Current Measurements137 Harmonic Measurements Power MeasurementsSimultaneous Output Phase Measurements Agilent 6834B only 138Triggering Measurements Returning Voltage and Current Data From the Data BufferMeasurement Trigger System Model INITiateIMMediateSEQuence3 or INITiateIMMediateNAME ACQuire Initiating the Measurement Trigger SystemSelecting the Measurement Trigger Source 140Pre-event and Post-event Triggering Generating Measurement TriggersVarying the Voltage and Current Sampling Rate 141Power-On Conditions Programming the Status RegistersOperation Status Group Standard Event Status Group Bit SignalStatus Byte and Service Request Enable Registers 143Ac Source Status Model 144 Questionable Status Group Questionable Instrument Isummary Status Group145 Standard Event Status Group Command ActionPON Power On Bit 146Status Byte Register ExamplesTrigger In BNC Programming the Trigger In and Trigger Out BNC ConnectorsMonitoring Both Phases of a Status Transition Servicing Questionable Status EventsRemote Inhibit and Discrete Fault Indicator Trigger Out BNC149 Remote Inhibit RI Scpi Command CompletionDiscrete Fault Indicator DFI 150Command Syntax 151Scpi Command Tree 152Scpi Command Tree a 153Page Scpi Confirmed Commands 155Non Scpi Commands 156Error Number List Error #157 158 159 Page Syntax Compatibility Elgar Model 9012 Plug-in Programmer CompatibilityMain Board W1 Jumper Option Emulation 161Status Model Power-on StateCommand Description ByteSystem Keys ProtectionFront Panel Operation Function KeysTrigger Control key functions E9012 Language Command SummaryEntry Keys Device Clear Volts n Curl n Freq n RNG 0 Rngf 0 1Drop n 165Page Using the SENSeCURRentACDCRANGe command 167Command Syntax 168CALCulateINTegralTIME CALCulateSMOothing169 Dc limit Dt tlimit Dt limit CALCulateLIMitUPPerVss delta Dmax limit 170FORMat 171FORMatBORDer 172MEASureARRayCURRentHARMonic? MEASureARRayVOLTageFLUCtuationsALL? 174Point Pst array 175MEASureARRayVOLTageFLUCtuationsFLICker? 176MEASureARRayVOLTageFLUCtuationsPST? 177SENSeCURRentPREFerence 178Slew Operation MEASureARRayCURRent 179Page Index 181Index 182183 184 Scpi List Step185 QUEStionable INSTrument ISUMmary?Agilent Sales and Support Offices Manual Updates
Related manuals
Manual 91 pages 25.18 Kb Manual 20 pages 27.01 Kb Manual 3 pages 27.44 Kb Manual 79 pages 6.57 Kb

6812B, 6811B, 6813B, 6834B, 6843A specifications

Agilent Technologies, a leader in electronic test and measurement equipment, offers a range of powerful signal sources including the 6843A, 6834B, 6814B, 6813B, and 6811B models. These instruments are designed to support various applications in research, development, and manufacturing, providing precise signal generation capabilities.

The Agilent 6843A is a versatile signal generator known for its exceptional frequency range and modulation capabilities. It supports an extensive bandwidth, making it ideal for applications that require high-frequency signal generation. With its superior phase noise performance, the 6843A is an excellent choice for radar, wireless communications, and electronic warfare applications. The instrument features an intuitive user interface, allowing engineers to set parameters quickly and efficiently.

Next, the Agilent 6834B offers exceptional performance characteristics, including high output power and low distortion. This signal generator is particularly noted for its ability to produce complex modulation formats, making it suitable for testing advanced wireless communication systems. With a reliable and stable output, the 6834B ensures accurate and repeatable measurements, which is vital for thorough testing processes.

The 6814B model stands out for its dual-channel capabilities, allowing users to generate simultaneous signals for testing multiple components or systems. This feature significantly enhances testing efficiency and flexibility for engineers. With built-in arbitrary waveform functionality, users can create custom waveforms, making the 6814B suitable for a wide range of applications including device characterization and signal processing research.

For those seeking a more compact solution, the Agilent 6813B provides essential signal generation features without compromising on performance. It is designed for a variety of applications across telecommunications and consumer electronics, featuring a straightforward interface and robust performance metrics.

Lastly, the 6811B is an entry-level yet capable model that supports a broad spectrum of testing needs. Perfect for educational and laboratory environments, it provides essential functionalities required for effective signal generation and analysis.

Overall, Agilent Technologies' 6843A, 6834B, 6814B, 6813B, and 6811B signal generators offer an array of features and technologies that cater to various application needs. Their precision, reliability, and user-oriented designs position them as invaluable assets in any testing environment, ensuring engineers can carry out their work with confidence and accuracy.