Mitsubishi Electronics FX1S manual Battery Backed/ Latched State Relays, PLC FX 1S FX 1N FX 2N

Page 81

FX Series Programmable Controllers

Devices in Detail 4

4.4.2Battery Backed/ Latched State Relays

There are a number of battery backed or latched relays whose status is retained in battery backed or EEPROM memory. If a power failure should occur all output and general purpose relays are switched off. When operation is resumed the previous status of these relays is restored.

Available devices:

 

 

 

 

 

 

 

 

 

PLC

FX1S

FX1N

FX2N

 

FX2NC

 

 

General state

N/A

N/A

 

500

 

 

relays

 

(S0 - 499)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Battery backed/

128

1000

 

500

 

 

latched relays

(S0 - 127)

(S0 - 999)

(S500 - 999)

 

 

 

 

 

 

 

 

 

Total available

128

1000

 

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• For more information about device availability for individual PLC’s, see chapter 8.

External loads:

State relays are provided with countless number of NO contact points and NC contact points, and are freely available for use through out a PLC program. These contacts cannot be used to directly drive external loads. All external loads should be driven through the use of direct (ex. Y) outputs.

4-7

Image 81
Contents Programming Manual Page Foreword FX Series Programmable ControllersFX Series Programmable Controllers FAX Back Combined Programming Manual J FX Series Programmable Controllers Software Warnings Hardware WarningsFX Series Programmable Controllers Contents STL Programming Applied Instructions Rotation And Shift Functions 30 to External FX Serial Devices Functions 80 to Execution Times And Instructional 10-1 Viii FX Series Programmable Controllers Chapter Contents Overview IntroductionWhat do You Need to Program a PLC? What is a Programmable Controller?Current Generation CPU all versions Special considerations for programming equipmentManual name Number FX Base Unit Hardware Assocciated ManualsManual name Number FX DU, GOT and DM units Memo Basic Program Instructions FX Series Programmable ControllersBasic Program Instructions What is a Program? Outline of Basic Devices Used in ProgrammingDetailed device information Example How to Read Ladder LogicLoad, Load Inverse OUT instructionProgram example Out Timer and Counter VariationsUse of dual coils Last coil effectDouble Coil Designation Peripheral limitations And, And InverseORI Or, Or InverseSingle Operation flags M2800 to M3071 Load Pulse, Load Trailing PulseLDF ANF OUT Pulse, And Trailing PulseORF ORB Or Pulse, Or Trailing PulseOr Block Batch processing limitationsSequential processing limitations ANB BlockMPS, MRD and MPP usage 13 MPS, MRD and MPPMultiple program examples MCR Master Control and ResetNested MC program example Resetting timers and counters Set and ResetTimer, Counter Out & Reset Retentive timers16.1Basic Timers, Retentive Timers And Counters Availability of devices Bit countersNormal 32 bit Counters High Speed CountersLeading and Trailing Pulse PLFUsages for INV InverseNo Operation No OperationProgram scan 20 EndMemo STL Programming FX Series Programmable ControllersSTL Programming General note What is STL, SFC And IEC1131 Part 3?How STL Operates Each step is a programLook Inside an STL Combined SFC Ladder representation How To Start And End An STL ProgramEmbedded STL programs Activating new statesInitial Steps Terminating an STL ProgramReturning to Standard Ladder Moving Between STL Steps Using SET to drive an STL coilUsing OUT to drive an STL coil OUT is used for loops and jumpsOut is used for distant jumps Basic Notes On The Behavior Of STL programs Rules and Techniques For STL programsT001 K20 K50 Single Signal Step Control Method 1 Using locking devicesMethod 2 Special Single Pulse Flags Restrictions Of Some Instructions When Used With STL Using ‘jump’ operations with STLRestrictions on using applied instructions STL OUT SET Using STL To Select The Most Appropriate ProgramLimits on the number of branches Using STL To Activate Multiple Flows SimultaneouslyLimits on the number of branches Instruction Format General Rules For Successful STL BranchingGeneral Precautions When Using The FX-PCS/AT-EE Software Simple STL Flow Programming ExamplesSET STL Identification of normally closed contactsSelective Branch/ First State Merge Example Program Points to noteFull STL flow diagram/program Advanced STL Use Devices in Detail FX Series Programmable ControllersDevices in Detail Inputs Configuration detailsAvailable devices Device MnemonicOutputs Device Mnemonic YAlias O/P Auxiliary Relays Device Mnemonic MGeneral Stable State Auxiliary Relays External loads Battery Backed/ Latched Auxiliary RelaysSpecial Single Operation Pulse Relays Special Diagnostic Auxiliary RelaysState Relays Device Mnemonic SGeneral Stable State State Relays PLC FX 1S FX 1N FX 2N Battery Backed/ Latched State RelaysMonitoring STL programs Assigned statesSTL/SFC programming IST instructionAnnunciator Flags Jumping to the end of the program PointersDevice availability Device Mnemonic PAdditional applied instructions Interrupt PointersNested levels Pointer positionTimer Interrupts Rules of useInput Interrupts Disabling high speed counter interrupts Driving special auxiliary relaysAdditional notes Disabling Individual InterruptsConstant H Constant KDevice Mnemonic K Example device usage N/ATimers Timer accuracyDevice Mnemonic T General timer operation Selectable TimersDriving special auxiliary coils Retentive Timers Using timers in interrupt or ‘CALL’ subroutinesTimers Used in Interrupt and ‘CALL’ Subroutines Internal timer accuracyTimer Accuracy ConditionCounters Setting ranges for countersHigh speed counters Device Mnemonic CGeneral/ Latched 16bit UP Counters Battery backed/latched countersBattery backed/ latched counters Selecting the counting directionGeneral/ Latched 32bit Bi-directional Counters Further uses None Basic high speed counter operationBasic High Speed Counter Operation Driving high speed counter coilsInput assignment Counter SpeedsAvailability of High Speed Counters Calculating the maximum combined counting speed on FX1S Setting range Device specificationDirection setting Using the SPD instructionRST Device size 11.5 2 Phase Bi-directional Counters C246 to C25011.6 A/B Phase Counters C252 to C255 Data Registers Device Mnemonic DExample device usage None Data register updates Data retentionGeneral Use Registers Use of diagnostic registers Using the FX2-40AW/APBattery Backed/ Latched Registers Special Diagnostic RegistersWriting to file registers Special caution when using FX1SFile Registers Program memory registersUses Externally Adjusted RegistersUse of Modifiers with Applied Instruction Parameters Index RegistersDevice Mnemonic V,Z Available formsUsing Multiple Index Registers Modifying a ConstantMisuse of the Modifiers Bit Devices, Individual and Grouped Bits, Words, BCD and HexadecimalMoving grouped bit devices Assigning I/OAssigning grouped bit devices Interpreting Word Data Word DevicesFX Series Programmable Controllers Word Data Summary Binary Coded Decimal value= ErrorInverted7 Additional1 14.4 Two’s ComplimentSome useful constants Floating Point And Scientific NotationScientific Notation Floating Point Format FLT