Mitsubishi Electronics FX1S manual Using the FX2-40AW/AP, Use of diagnostic registers

Page 106

FX Series Programmable Controllers

Devices in Detail 4

4.12.2Battery Backed/ Latched Registers

Once data is written to a battery backed register, it remains unchanged until it is overwritten. When the PLC’s status is changed from RUN to STOP, the data in these registers is retained. The range of devices that are battery backed can be changed by adjusting the parameters of the PLC. For details of how to do this please refer to the appropriate programming tools manual.

Using the FX2-40AW/AP:

When using an FX with either the FX2-40AW or the FX2-40AP a proportion of the latched data registers are automatically assigned for communications use by the FX2-40AW/AP module.

Communication between Master and Slave 100 points M800 to M899 10 points D490 to D499

Communication between Slave and Master 100 points M900 to M999 10 points D500 to D509

4.12.3Special Diagnostic Registers

Special registers are used to control or monitor various modes or devices inside the PLC. Data written in these registers are set to the default values when the power supply to the PLC is turned ON.

-Note: When the power is turned ON, all registers are first cleared to 0 (zero) and then the default values are automatically written to the appropriate registers by the system software. For example, the watchdog timer data is written to D8000 by the system software. To change the setting, the user must write the required value over what is currently stored in D8000.

Data stored in the special diagnostic registers will remain unchanged when the PLC is switched from STOP mode into RUN.

Use of diagnostic registers:

• On no account should unidentified devices be used. If a device is used, it should only be for the purpose identified in this manual. Please see chapter 6 for tables containing data and descriptions of the available devices for each PLC.

4-32

Image 106
Contents Programming Manual Page FX Series Programmable Controllers ForewordFX Series Programmable Controllers FAX Back Combined Programming Manual J FX Series Programmable Controllers Hardware Warnings Software WarningsFX Series Programmable Controllers Contents STL Programming Applied Instructions Rotation And Shift Functions 30 to External FX Serial Devices Functions 80 to Execution Times And Instructional 10-1 Viii FX Series Programmable Controllers Chapter Contents Introduction OverviewWhat is a Programmable Controller? What do You Need to Program a PLC?Special considerations for programming equipment Current Generation CPU all versionsAssocciated Manuals Manual name Number FX Base Unit HardwareManual name Number FX DU, GOT and DM units Memo Basic Program Instructions FX Series Programmable ControllersBasic Program Instructions Outline of Basic Devices Used in Programming What is a Program?Detailed device information How to Read Ladder Logic ExampleOUT instruction Load, Load InverseProgram example Timer and Counter Variations OutLast coil effect Use of dual coilsDouble Coil Designation And, And Inverse Peripheral limitationsOr, Or Inverse ORILoad Pulse, Load Trailing Pulse Single Operation flags M2800 to M3071Pulse, And Trailing Pulse LDF ANF OUTOr Pulse, Or Trailing Pulse ORF ORBBatch processing limitations Or BlockSequential processing limitations Block ANB13 MPS, MRD and MPP MPS, MRD and MPP usageMultiple program examples Master Control and Reset MCRNested MC program example Set and Reset Resetting timers and countersRetentive timers Timer, Counter Out & Reset16.1Basic Timers, Retentive Timers And Counters Normal 32 bit Counters Bit countersAvailability of devices High Speed CountersPLF Leading and Trailing PulseInverse Usages for INVNo Operation No Operation20 End Program scanMemo STL Programming FX Series Programmable ControllersSTL Programming What is STL, SFC And IEC1131 Part 3? General noteEach step is a program How STL OperatesLook Inside an STL Embedded STL programs How To Start And End An STL ProgramCombined SFC Ladder representation Activating new statesTerminating an STL Program Initial StepsReturning to Standard Ladder Using SET to drive an STL coil Moving Between STL StepsOUT is used for loops and jumps Using OUT to drive an STL coilOut is used for distant jumps Rules and Techniques For STL programs Basic Notes On The Behavior Of STL programsT001 K20 K50 Method 1 Using locking devices Single Signal Step ControlMethod 2 Special Single Pulse Flags Using ‘jump’ operations with STL Restrictions Of Some Instructions When Used With STLRestrictions on using applied instructions Using STL To Select The Most Appropriate Program STL OUT SETUsing STL To Activate Multiple Flows Simultaneously Limits on the number of branchesLimits on the number of branches General Rules For Successful STL Branching Instruction FormatGeneral Precautions When Using The FX-PCS/AT-EE Software Programming Examples Simple STL FlowIdentification of normally closed contacts SET STLPoints to note Selective Branch/ First State Merge Example ProgramFull STL flow diagram/program Advanced STL Use Devices in Detail FX Series Programmable ControllersDevices in Detail Available devices Configuration detailsInputs Device MnemonicDevice Mnemonic Y OutputsAlias O/P Device Mnemonic M Auxiliary RelaysGeneral Stable State Auxiliary Relays Battery Backed/ Latched Auxiliary Relays External loadsSpecial Diagnostic Auxiliary Relays Special Single Operation Pulse RelaysDevice Mnemonic S State RelaysGeneral Stable State State Relays Battery Backed/ Latched State Relays PLC FX 1S FX 1N FX 2NSTL/SFC programming Assigned statesMonitoring STL programs IST instructionAnnunciator Flags Device availability PointersJumping to the end of the program Device Mnemonic PNested levels Interrupt PointersAdditional applied instructions Pointer positionRules of use Timer InterruptsInput Interrupts Additional notes Driving special auxiliary relaysDisabling high speed counter interrupts Disabling Individual InterruptsDevice Mnemonic K Constant KConstant H Example device usage N/ATimer accuracy TimersDevice Mnemonic T Selectable Timers General timer operationDriving special auxiliary coils Using timers in interrupt or ‘CALL’ subroutines Retentive TimersTimer Accuracy Internal timer accuracyTimers Used in Interrupt and ‘CALL’ Subroutines ConditionHigh speed counters Setting ranges for countersCounters Device Mnemonic CBattery backed/latched counters General/ Latched 16bit UP CountersSelecting the counting direction Battery backed/ latched countersGeneral/ Latched 32bit Bi-directional Counters Basic high speed counter operation Further uses NoneDriving high speed counter coils Basic High Speed Counter OperationCounter Speeds Input assignmentAvailability of High Speed Counters Calculating the maximum combined counting speed on FX1S Direction setting Device specificationSetting range Using the SPD instructionRST 11.5 2 Phase Bi-directional Counters C246 to C250 Device size 11.6 A/B Phase Counters C252 to C255 Device Mnemonic D Data RegistersExample device usage None Data retention Data register updatesGeneral Use Registers Battery Backed/ Latched Registers Using the FX2-40AW/APUse of diagnostic registers Special Diagnostic RegistersFile Registers Special caution when using FX1SWriting to file registers Program memory registersExternally Adjusted Registers UsesDevice Mnemonic V,Z Index RegistersUse of Modifiers with Applied Instruction Parameters Available formsModifying a Constant Using Multiple Index RegistersMisuse of the Modifiers Bits, Words, BCD and Hexadecimal Bit Devices, Individual and GroupedAssigning I/O Moving grouped bit devicesAssigning grouped bit devices Word Devices Interpreting Word DataFX Series Programmable Controllers Binary Coded Decimal value= Error Word Data Summary14.4 Two’s Compliment Inverted7 Additional1Floating Point And Scientific Notation Some useful constantsScientific Notation Floating Point Format FLT