HP serviceguard t2808-90006 manual Building an Extended Distance

Page 51

 

Building an Extended Distance Cluster Using Serviceguard and Software RAID

2

Building an Extended Distance

 

Cluster Using Serviceguard and

 

Software RAID

Simple Serviceguard clusters are usually configured in a single data center, often in a single room, to provide protection against failures in CPUs, interface cards, and software. Extended Serviceguard clusters are specialized cluster configurations, which allow a single cluster to extend across two separate data centers for increased disaster tolerance. Depending on the type of links employed, distances of up to 100 kms between data centers can be achieved.

This chapter discusses several types of extended distance cluster that use basic Serviceguard technology with software mirroring (using MD Software RAID) and Fibre Channel. Both two data center and three data center architectures are illustrated. This chapter discusses the following:

• “Types of Data Link for Storage and Networking” on page 52

• “Two Data Center and Quorum Service Location Architectures” on page 53

• “Rules for Separate Network and Data Links” on page 57

• “Guidelines on DWDM Links for Network and Data” on page 58

Chapter 2

51

Image 51
Contents Page Legal Notices Contents Disaster Scenarios and Their Handling Managing an MD Device Contents Contents Editions and Releases Printing HistoryHP Printing Division Document Organization Intended AudiencePage Related Page Disaster Tolerance Evaluating the Need for Disaster Tolerance Evaluating the Need for Disaster Tolerance Pkg B Client Connections What is a Disaster Tolerant Architecture?High Availability Architecture Node 1 failsDisaster Tolerant Architecture Extended Distance Clusters Understanding Types of Disaster Tolerant ClustersFrom both storage devices Extended Distance Cluster Two Data Center Setup Benefits of Extended Distance Cluster Cluster Extension CLX Cluster CLX for Linux Serviceguard Cluster Shows a CLX for a Linux Serviceguard cluster architectureBenefits of CLX Differences Between Extended Distance Cluster and CLX Continental Cluster Continental Cluster Los Angeles ClusterNew York Cluster Data Cent er a Data Center BBenefits of Continentalclusters Continental Cluster With Cascading Failover Comparison of Disaster Tolerant SolutionsCluster HP-UX only Comparison of Disaster Tolerant Cluster SolutionsAttributes Extended Distance ContinentalclustersUnderstanding Types of Disaster Tolerant Clusters Understanding Types of Disaster Tolerant Clusters Understanding Types of Disaster Tolerant Clusters WAN EVA Protecting Nodes through Geographic Dispersion Disaster Tolerant Architecture GuidelinesOff-line Data Replication Protecting Data through ReplicationPhysical Data Replication On-line Data ReplicationDisadvantages of physical replication in hardware are Advantages of physical replication in hardware areAdvantages of physical replication in software are Logical Data Replication Disadvantages of physical replication in software areDisadvantages of logical replication are Ideal Data Replication Using Alternative Power SourcesCreating Highly Available Networking Alternative Power SourcesPower Circuit 1 node Data Center a Node 3 Power CircuitDisaster Tolerant Wide Area Networking Disaster Tolerant Local Area NetworkingDisaster Tolerant Cluster Limitations Managing a Disaster Tolerant Environment Manage it in-house, or hire a service?How is the cluster maintained? Additional Disaster Tolerant Solutions Information Building an Extended Distance Dwdm Types of Data Link for Storage NetworkingTwo Data Center and Quorum Service Location Architectures Two Data Center and Quorum Service Location Architectures Server Two Data Centers and Third Location with Dwdm and QuorumTwo Data Center and Quorum Service Location Architectures Rules for Separate Network and Data Links Guidelines on Dwdm Links for Network and Data Guidelines on Dwdm Links for Network and Data Guidelines on Dwdm Links for Network and Data Chapter Configuring your Environment Understanding Software RAID Prerequisites Installing the Extended Distance Cluster SoftwareInstalling XDC Supported Operating Systems# rpm -Uvh xdc-A.01.00-0.rhel4.noarch.rpm Verifying the XDC InstallationInstalling the Extended Distance Cluster Software Configuring the Environment Configuring the Environment Configuring the Environment Setting the Value of the Link Down Timeout Parameter Configuring Multiple Paths to StorageCluster Reformation Time and Timeout Values Http//docs.hp.com Using Persistent Device NamesTo Create and Assemble an MD Device Creating a Multiple Disk Device# mdadm -A -R /dev/md0 /dev/hpdev/sde1 /dev/hpdev/sdf1 Chapter Linux #RAIDTAB= # MD RAID Commands Creating and Editing the Package Control Scripts To Create a Package Control ScriptTo Edit the Datarep Variable To Edit the Xdcconfig File parameter To Configure the RAID Monitoring ServiceEditing the raid.conf File Cases to Consider when Setting Rpotarget RPO Target Definitions Chapter Multipledevices and Componentdevices Raidmonitorinterval Configuring your Environment for Software RAID What happens when this disaster occurs Recovery ProcessDisaster Scenario Disaster Scenarios and Their Handling Disaster Scenarios and Their Handling# mdadm --remove /dev/md0 # mdadm -add /dev/md0 Dev/hpdev/mylink-sdf P1 uses a mirror md0 Run the following command to S2 is non-current by less # cmrunpkg packagename Execute the commands that With md0 consisting of only N1, for example Becomes accessible from N2 Center Disaster Scenarios and Their Handling Managing an MD Device Cat /proc/mdstat Viewing the Status of the MD DeviceExample A-1 Stopping the MD Device /dev/md0 Stopping the MD DeviceExample A-2 Starting the MD Device /dev/md0 Starting the MD Device# udevinfo -q symlink -n sdc1 Removing and Adding an MD Mirror Component Disk# mdadm --remove /dev/md0 /dev/hpdev/sde Adding a Mirror Component DeviceIndex 104