HP serviceguard t2808-90006 manual Creating Highly Available Networking, Alternative Power Sources

Page 45

Disaster Tolerance and Recovery in a Serviceguard Cluster

Disaster Tolerant Architecture Guidelines

Figure 1-9

Alternative Power Sources

Power Circuit 1 node 1

Power Circuit 2

node 2

Data Center A

node 3 Power Circuit 3

Power Circuit 4

node 4

Data Center B

Housing remote nodes in another building often implies they are powered by a different circuit, so it is especially important to make sure all nodes are powered from a different source if the disaster tolerant cluster is located in two data centers in the same building. Some disaster tolerant designs go as far as making sure that their redundant power source is supplied by a different power substation on the grid. This adds protection against large-scale power failures, such as brown-outs, sabotage, or electrical storms.

Creating Highly Available Networking

Standard high-availability guidelines require redundant networks. Redundant networks may be highly available, but they are not disaster tolerant if a single accident can interrupt both network connections. For example, if you use the same trench to lay cables for both networks, you do not have a disaster tolerant architecture because a single accident, such as a backhoe digging in the wrong place, can sever both cables at once, making automated failover during a disaster impossible.

In a disaster tolerant architecture, the reliability of the network is paramount. To reduce the likelihood of a single accident causing both networks to fail, redundant network cables should be installed so that they use physically different routes for each network. How you route cables will depend on the networking technology you use. Specific guidelines for some network technologies are listed here.

Chapter 1

45

Image 45
Contents Page Legal Notices Contents Disaster Scenarios and Their Handling Managing an MD Device Contents Contents Editions and Releases Printing HistoryHP Printing Division Document Organization Intended AudiencePage Related Page Disaster Tolerance Evaluating the Need for Disaster Tolerance Evaluating the Need for Disaster Tolerance High Availability Architecture What is a Disaster Tolerant Architecture?Node 1 fails Pkg B Client ConnectionsDisaster Tolerant Architecture Extended Distance Clusters Understanding Types of Disaster Tolerant ClustersFrom both storage devices Extended Distance Cluster Two Data Center Setup Benefits of Extended Distance Cluster Cluster Extension CLX Cluster CLX for Linux Serviceguard Cluster Shows a CLX for a Linux Serviceguard cluster architectureBenefits of CLX Differences Between Extended Distance Cluster and CLX Continental Cluster New York Cluster Los Angeles ClusterData Cent er a Data Center B Continental ClusterBenefits of Continentalclusters Continental Cluster With Cascading Failover Comparison of Disaster Tolerant SolutionsAttributes Extended Distance Comparison of Disaster Tolerant Cluster SolutionsContinentalclusters Cluster HP-UX onlyUnderstanding Types of Disaster Tolerant Clusters Understanding Types of Disaster Tolerant Clusters Understanding Types of Disaster Tolerant Clusters WAN EVA Protecting Nodes through Geographic Dispersion Disaster Tolerant Architecture GuidelinesOff-line Data Replication Protecting Data through ReplicationPhysical Data Replication On-line Data ReplicationDisadvantages of physical replication in hardware are Advantages of physical replication in hardware areAdvantages of physical replication in software are Logical Data Replication Disadvantages of physical replication in software areDisadvantages of logical replication are Ideal Data Replication Using Alternative Power SourcesPower Circuit 1 node Alternative Power SourcesData Center a Node 3 Power Circuit Creating Highly Available NetworkingDisaster Tolerant Wide Area Networking Disaster Tolerant Local Area NetworkingDisaster Tolerant Cluster Limitations Managing a Disaster Tolerant Environment Manage it in-house, or hire a service?How is the cluster maintained? Additional Disaster Tolerant Solutions Information Building an Extended Distance Dwdm Types of Data Link for Storage NetworkingTwo Data Center and Quorum Service Location Architectures Two Data Center and Quorum Service Location Architectures Server Two Data Centers and Third Location with Dwdm and QuorumTwo Data Center and Quorum Service Location Architectures Rules for Separate Network and Data Links Guidelines on Dwdm Links for Network and Data Guidelines on Dwdm Links for Network and Data Guidelines on Dwdm Links for Network and Data Chapter Configuring your Environment Understanding Software RAID Installing XDC Installing the Extended Distance Cluster SoftwareSupported Operating Systems Prerequisites# rpm -Uvh xdc-A.01.00-0.rhel4.noarch.rpm Verifying the XDC InstallationInstalling the Extended Distance Cluster Software Configuring the Environment Configuring the Environment Configuring the Environment Setting the Value of the Link Down Timeout Parameter Configuring Multiple Paths to StorageCluster Reformation Time and Timeout Values Http//docs.hp.com Using Persistent Device NamesTo Create and Assemble an MD Device Creating a Multiple Disk Device# mdadm -A -R /dev/md0 /dev/hpdev/sde1 /dev/hpdev/sdf1 Chapter Linux #RAIDTAB= # MD RAID Commands Creating and Editing the Package Control Scripts To Create a Package Control ScriptTo Edit the Datarep Variable To Edit the Xdcconfig File parameter To Configure the RAID Monitoring ServiceEditing the raid.conf File Cases to Consider when Setting Rpotarget RPO Target Definitions Chapter Multipledevices and Componentdevices Raidmonitorinterval Configuring your Environment for Software RAID What happens when this disaster occurs Recovery ProcessDisaster Scenario Disaster Scenarios and Their Handling Disaster Scenarios and Their Handling# mdadm --remove /dev/md0 # mdadm -add /dev/md0 Dev/hpdev/mylink-sdf P1 uses a mirror md0 Run the following command to S2 is non-current by less # cmrunpkg packagename Execute the commands that With md0 consisting of only N1, for example Becomes accessible from N2 Center Disaster Scenarios and Their Handling Managing an MD Device Cat /proc/mdstat Viewing the Status of the MD DeviceExample A-1 Stopping the MD Device /dev/md0 Stopping the MD DeviceExample A-2 Starting the MD Device /dev/md0 Starting the MD Device# udevinfo -q symlink -n sdc1 Removing and Adding an MD Mirror Component Disk# mdadm --remove /dev/md0 /dev/hpdev/sde Adding a Mirror Component DeviceIndex 104