Intelligent Motion Systems MDrive34Plus manual Figure C.2 10-Pin IDC

Page 8

Figure 2.5.10: SPI Motor Interface Upgrade Utility

2-32

Figure 2.5.11: SPI Motor Interface Initialization

2-33

Figure 2.5.12: SPI Motor Interface Port Menu

2-33

Figure 2.6.1: SPI Timing

2-35

Figure 2.6.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)

2-37

Appendices

 

Figure A.1: MDrive34Plus Microstepping Single Length Speed-Torque Curves

A-3

Figure A.2: MDrive34Plus Microstepping Double Length Speed-Torque Curves

A-3

Figure A.3: MDrive34Plus Microstepping Triple Length Speed-Torque Curves

A-4

Figure B.1: MDrive34 Torque-Speed Curve

A-7

Figure B.2: Lead Screw System Inertia Considerations

A-9

Figure B.3: Rack and Pinion System Inertia Considerations

A-10

Figure B.4: Conveyor System Inertia Considerations

A-10

Figure B.5: Rotary Table System Inertia Considerations

A-11

Figure B.6: Chain Drive System Inertia Considerations

A-12

Figure B.7: Planetary Gearbox Specifications for MDrive34Plus

A-13

Figure C.1: MD-CC300-001 Mechanical Specifications and Connection

A-15

Figure C.2: 10-Pin IDC

A-16

Figure C.3: MD-CC303-001 Mechanical Specifications and Connection

A-17

Figure C.4: 12-Pin Wire Crimp

A-18

Figure C.5: Hardware Update Wizard

A-19

Figure C.6: Hardware Update Wizard Screen 2

A-19

Figure C.7: Hardware Update Wizard Screen 3

A-20

Figure C.8: Windows Logo Compatibility Testing

A-20

Figure C.9: Hardware Update Wizard Finish Installation

A-20

Figure C.10: Hardware Properties

A-21

Figure C.11: Windows Device Manager

A-21

Figure C.12: PD12-1434-FL3

A-22

Figure C.13: 12-Pin Wire Crimp

A-22

Figure C.14: PD10-3400-FL3

A-23

Figure C.15: PD10-3400-FL3

A-23

Figure C.16: PD02-3400-FL3

A-24

Figure C.17: 2-Pin Wire Crimp

A-24

Figure D.1: Single-End and Differential Encoder Connections

A-26

Figure D.2: Single-End Encoder Signal Timing

A-27

Figure D.3: Differential Encoder Signal Timing

A-27

Figure E.1: Speed Force Limitations

A-29

Figure E.2: MDrive34Plus Speed Torque Curves

A-29

Figure F.3: Mechanical Specifications

A-30

iv

Image 8
Contents MDrive34Plus Microstepping MDrive34Plus Microstepping Hardware Reference Change Log Important information This page intentionally left blank Table Of Contents Appendices List Of Figures Appendix E Linear Slide OptionFigure C.2 10-Pin IDC List of Tables This Page Intentionally Left Blank MDrive34Plus Microstepping Install the IMS SPI Motor Interface Figure GS.2 IMS Motor Interface Showing Default SettingsPart Hardware Specifications Intentionally Left Blank Introduction to the MDrive34Plus Microstepping Features and BenefitsConfiguration Interface Page General Specifications Electrical SpecificationsSetup Parameters Single LengthMechanical Specifications Dimensions in Inches mmLocking Wire Crimp with Internal Optical Encoder Connector OptionsWire Color With Internal Encoder Function Description Pin Assignment And Description Flying Leads VersionMDrive 34Plus Microstepping Hardware Revision R071108 P2 Connector SPI Communications MosiPin Assignment And Description Pluggable Interface Version Pin # Function DescriptionP3 Connector DC Power, 2-Pin Locking Wire Crimp PD02-3400-FL3Recommended Cable Mating Connector Kits QuickStart KitCommunication Converters Prototype Development CablesIntentionally Left Blank Part Interfacing Configuring Intentionally Left Blank Allow Top Clearance for Wiring/Cabling Mounting and Interface GuidelinesMounting Recommendations Mounting Flange or Adapter PlateRules of Shielding Rules of WiringLayout and Interface Guidelines Recommended Mating Connectors and Pins Securing Power Leads and Logic Leads 3 Typical MDrive Shown with Leads SecuredInterfacing DC Power Choosing a Power Supply for Your MDriveDC Power Supply Recommendations ISP300-7 Unregulated Switching SupplyIP804 Unregulated Linear Supply IP806 Unregulated Linear SupplyConnecting DC Power 2 DC Power ConnectionsRecommended Power and Cable Configurations Example a Cabling Under 50 Feet, DC PowerMDrive34Plus Recommended Power Supply Cable AWG Intentionally Left Blank Optically Isolated Logic Inputs Isolated Logic Input Pins and ConnectionsIsolated Input Interface and Connection Input Configuration See Input ConfigurationStep Clock DirectionQuadrature Up/DownDirection StepChannel a Channel BOptocoupler Reference Optocoupler ReferenceInput Connection Examples Open Collector Interface ExampleSwitch Interface Sourcing Switch Interface ExampleMinimum Required Connections +VDC Motor SupplyConnecting SPI Communications SPI Pins and Connections LogicLogic Level Shifting and Conditioning Circuit 2 Logic Level Shifting and Conditioning CircuitSPI Master with Multiple MDrivePlus Microstepping SPI ClockColor Coded Parameter Values Using the IMS SPI Motor Interface InstallationConfiguration Parameters and Ranges Motion Settings Screen Read-Only Part Serial Number Screen IMS SPI Motor Interface Menu OptionsFile ViewHelp UpgradeRecall Screen 1 The Motion Settings Configuration Screen Msel Microstep Resolution SelectionConnected/Disconnected Indicator FactorySet ExitScreen 2 I/O Settings Configuration Screen Enable Active High/LowInput Clock Type Input Clock FilterIMS IMS Serial Number Fault IndicationIMS Part Number/Serial Number Screen Upgrading the Firmware in the MDrivePlus Microstepping IMS SPI Upgrader ScreenUpgrade Instructions Initialization Screen Port MenuIntentionally Left Blank Check Sum Calculation for SPI Using User-Defined SPISPI Timing Notes SPI Commands and Parameters MSBWrite SPI Communications SequenceIntentionally Left Blank Appendices MDrive 34Plus Microstepping Hardware Revision R071108 MDrive34Plus Microstepping Motor Performance Speed-Torque CurvesMotor Specifications Single LengthDouble Length Triple LengthPlanetary Gearboxes Section OverviewProduct Overview Selecting a Planetary GearboxCalculating the Shock Load Output Torque TAB FactorsReduction Ratio ExampleNominal Output Torque Figure B.1 MDrive34 Torque-Speed CurveShock Load Output Torque =1.6 =1.7 =1.9Lead Screw System InertiaType of System Conveyor Belt Rack and PinionRotary Table Belt DriveChain Drive Figure B.6 Chain Drive System Inertia ConsiderationsPM81 Gearbox Ratios and Part Numbers Planetary Gearbox for MDrive34PlusMDrive34Plus Planetary Gearbox Parameters Intentionally Left Blank MD-CC300-001 MD-CC30x-001 USB to SPI Converter and Parameter Setup CableConnectivity Mating Connector Kit p/n CK-01 Connector Detail and Mating Connector KitConnector Details MD-CC303-001 MD-CC3Figure C.4 12-Pin Wire Crimp Mating Connector Kit p/n CK-03Installation Procedure for the MD-CC30x-000 Installing the Cable/VCP DriversFigure C.7 Hardware Update Wizard Screen Determining the Virtual COM Port VCP Figure C.10 Hardware PropertiesWire Color Code Prototype Development Cable PD12-1434-FL3Mating Connector Kit p/n CK-02 PD10-3400-FL3 Internal Differential EncoderPrototype Development Cable PD02-3400-FL3 Main Power Mating Connector Kit p/n CK-05Interfacing an Encoder Factory Mounted Internal EncoderEncoder Connections Differential encoderDifferential Encoder Encoder SignalsSingle-End Encoder Available with Flying Leads Version only Recommended Encoder Mating Connectors Encoder CableFeatures Linear Slide OptionMDrive34Plus Linear Slide †Speed/Force correlating equationsSpecifications Mechanical SpecificationsWarranty Intelligent Motion Systems, Inc

MDrive34Plus specifications

The Intelligent Motion Systems MDrive34Plus is an advanced integrated stepper motor and drive solution designed for a wide range of industrial automation applications. This compact device combines the motor, drive, and control into a single unit, simplifying installation and minimizing space requirements. This makes it an ideal choice for applications where space and efficiency are critical.

One of the standout features of the MDrive34Plus is its high torque output, which enables it to handle significant loads with ease. Rated for a variety of torque configurations, this stepper motor provides the necessary power for demanding tasks while maintaining precise control and smooth operation. The MDrive34Plus also features a high-resolution microstepping capability, which enhances performance by providing smoother motion and reducing audible noise.

The device employs advanced digital control technologies, ensuring accurate positioning and minimizing erratic performance. Integrated with onboard intelligence, the MDrive34Plus allows for programmable settings, including acceleration, deceleration, and speed control, which can be customized according to the specific requirements of the application.

In terms of connectivity, the MDrive34Plus offers a range of communication protocols including RS-232, RS-485, and USB options, allowing it to easily integrate with various control systems and enable real-time monitoring and diagnostics. This flexibility is vital for modern automation solutions where adaptability is key.

The MDrive34Plus is also designed for robust performance in challenging environments, featuring an IP65 rated enclosure that protects against dust and moisture. This makes it suitable for use in a variety of industrial settings such as packaging, assembly, and robotics.

Furthermore, the MDrive34Plus supports both open-loop and closed-loop control configurations. This versatility provides users with the ability to choose the best operational mode for their application, optimizing performance and efficiency.

In conclusion, the Intelligent Motion Systems MDrive34Plus is a powerful, flexible, and easy-to-install integrated motor and drive solution. With its high torque capabilities, advanced digital control features, diverse connectivity options, and robust design, it stands out as an excellent choice for modern automation challenges. Whether for precise positioning tasks or heavy load handling, the MDrive34Plus is equipped to meet a broad spectrum of operational demands.