Agilent Technologies 6634B, 66332A, 6633B, 6632B service manual Measurement Techniques, Test Setup

Page 12

2 - Verification and Performance Tests

Resistor

1 ohm, 50 W

 

Ohmite L50J1R0

(substitute for electronic

3 ohm, 100 W

(Agilent 66332A/6632B)

Ohmite RLS5R0 (adjustable)

load if load is too noisy

24 ohm, 100 W

(Agilent 6633B)

Ohmite RLS25R (adjustable)

for CC PARD test)

99 ohm, 100 W (Agilent 6634B)

Ohmite RLS100 (adjustable)

 

1k ohm, 5%, 3W (all models)

Agilent 0813-0001

Oscilloscope

Sensitivity: 1 mV

Agilent 54504A or equivalent

 

Bandwidth Limit: 20 MHz

 

 

Probe: 1:1 with RF tip

 

RMS Voltmeter

True RMS

 

Agilent 3400B or equivalent

 

Bandwidth: 20 MHz

 

 

Sensitivity: 100 ∝V

 

Variable-Voltage

Adjustable to highest rated input voltage range.

 

Transformer

Power: 500 VA

 

Measurement Techniques

Test Setup

Most tests are performed at the rear terminals of the supply as shown in Figure 2-1a. Measure the dc voltage directly at the +S and -S terminals.

-

+ 240 VDC MAX TO

-

+ 240 VDC MAX TO

 

 

+S

+

-

 

-S

 

 

+S

+

-

 

-S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DVM, Scope, or

+

 

RMS voltmeter

 

(for CV tests)

-

 

 

 

+

DC

Load

Ammeter

resistor

1 k

 

-

DVM or

+

 

RMS voltmeter

 

(for CC tests)

-

 

 

 

Current

monitor

+-

Electronic

Load

(see note)

B.

+

DC

Ammeter

-

-

+ 240 VDC MAX TO

+S + - -S

Load

resistor 1 k

 

Note: Use dc supply with same polarity

 

connections for - CC tests.

A.

Replace load with appropriate

resistor for CC noise test.

C.

+-

External

DC supply

Figure 2-1. Test Setup

12

Image 12
Contents Agilent Part No Microfiche No September Warranty Information CertificationSafety Summary Before Applying PowerSafety Symbol Definitions Symbol DescriptionPrinting History Instrument IdentificationTable of Contents Initialization ROM Upgrade Disassembly ProceduresIntroduction General Schematic Notes Backdating Post-repair CalibrationPage Safety Considerations OrganizationRelated Documents ChapterRevisions Electrostatic DischargeManual Revisions Firmware RevisionsIntroduction Test Equipment RequiredTest Setup Measurement TechniquesOperation Verification Tests Performance TestsElectronic Load Current-Monitoring ResistorCV Setup Constant Voltage CV TestsVoltage Programming and Readback Accuracy CV Load EffectCV Source Effect CV Noise PardTransient Recovery Time CC SetupConstant Current CC Tests Current Programming and Readback AccuracyCurrent Sink -CC Operation Low Range Current Readback AccuracyCC Load and Line Regulation CC Load Effect CC Source EffectPerformance Test Equipment Form CC Noise PardPerformance Test Record Forms Iout + 0.25 mA Iout Iout + 4.3 mAIout Iout + 2.3 mA Troubleshooting Overall Troubleshooting Flow ChartsTest Equipment Required for Troubleshooting Type Purpose Recommended ModelSheet 1. Main Flowchart Sheet 2. Main Flowchart Sheet 3. Main Flowchart Sheet 4. OV at Turn-On Sheet 5. OV at Turn-On Sheet 6. FS Indicated but Fuse OK Sheet 7. No Output Voltage Sheet 8. No Output Voltage Sheet 9 No Output Voltage Sheet 10. No Current Limit Sheet 11. Unit Does Not OV Sheet 12. High Output Voltage Specific Troubleshooting Procedures Power-on Self-test FailuresSelf-Test Error Codes/Messages Error Code Description Probable CauseCV/CC Status Annunciators Troubleshooting Bias and Rail VoltagesBias and Reference Voltages Bias Test Point Common MeasurementJ307 Voltage Measurements Voltage Measurements at J307 A2 Interface to A1 Main boardDisabling Protection Features Manual Fan Speed ControlInhibit Calibration Switch Calibration PasswordPost-repair Calibration ROM Upgrade Upgrade ProcedureInitialization Identifying the FirmwareDisassembly Procedures Remote sense leads before attempting disassemblyList of Required Tools Cover, Removal and Replacement A2 Interface Board, Removal and ReplacementFront Panel Assembly, Removal and Replacement S1 Line Switch, Removal and Replacement A3 Front Panel Board, Removal and ReplacementT1 Power Transformer, Removal and Replacement A1 Main Control BoardLine Voltage Wiring Transformer WiringInterface Signals Power Supply Interface signalsConnector Signal Description A3 Front Panel Circuits A2 Interface CircuitsPrimary Interface Secondary InterfaceA2/A3 Block Diagram Power Circuits A1 Main Board CircuitsA1 Block Diagram Control Circuits Principles of Operation Page Chassis, Electrical Designator Model PartNumber Qty DescriptionChassis, Mechanical Designator Model Part Number Qty DescriptionMechanical Parts ldentification A1 Control Board PC Board Assembly Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Binding Post Option #020 A5 AC input/RFI BoardRelay Option #760 General Schematic Notes Model-dependent ComponentsDiagrams A1 Board Component Locations R434 825 R500 175 325 R435 R505 A1 Board Component Locations A4 and A6 Board Component Locations A1 Board schematic sheet A1 Board schematic sheet A1 Board schematic sheet A6 Relay Option Board schematic Index Index
Related manuals
Manual 103 pages 34 Kb Manual 83 pages 60.43 Kb

6632B, 6633B, 66332A, 6634B specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.