Agilent Technologies 6634B, 66332A, 6633B, 6632B service manual Cover, Removal and Replacement

Page 44

3 - Troubleshooting

Cover, Removal and Replacement

a.Using a 2TP Pozi screwdriver, unscrew the two screws that hold the carrying straps to the power supply, and then remove the two screws from the opposite side of the case.

b.To remove the cover, first spread the bottom rear of the cover slightly and push from the front panel

c.Slide the cover backward until it clears the rear of the power supply.

A2 Interface Board, Removal and Replacement

To remove the Interface Board, proceed as follows:

a.Remove the cover of the power supply as described under, "Cover Removal and Replacement."

b.Remove the two 7 mm and 3/16 inch hex screws that hold the GPIB and RS-232 connectors in place.

c.Unplug the cable from J206. Depress the release button located at the end of the connector where the wires enter the housing.

d.Unplug the flat cables. Note the position of the conductive side for reinstallation. Connectors release the cable by pulling out end tabs as shown by the arrows in the following figure.

e.Lift the board off of the snap-in standoffs.

f.To reinstall the Interface board, perform the above steps in reverse order.

Front Panel Assembly, Removal and Replacement

This procedure removes the front panel assembly from the dc power supply.

a.Remove the Power Supply Cover as described earlier in, "Top Cover Removal and Replacement."

b.Disconnect the cable between the Front Panel board and the Interface board at the Interface board.

c.Carefully peel off the vinyl trim strips on each side of the front panel that cover the front panel screws.

d.Using a Torx T10 driver remove the two screws (one on each side) that hold the front panel assembly to the chassis.

e.Slide the Front Panel assembly forward and away from the chassis to access the S1 power switch.

f.Disconnect the wires going to the S1 switch assembly. For reassembly, make a note of the color coding of the wires and the pins to which they are connected.

g . If the supply has front panel binding posts, unplug the cable from the binding post connector and use a Torx T15 driver to remove the screw connecting the ground wire to the chassis.

f.You can now remove the front panel assembly from the supply.

g.To reinstall the Front Panel Assembly, perform the above steps in reverse order.

44

Image 44
Contents Agilent Part No Microfiche No September Warranty Information CertificationSafety Summary Before Applying PowerSafety Symbol Definitions Symbol DescriptionPrinting History Instrument IdentificationTable of Contents Initialization ROM Upgrade Disassembly ProceduresIntroduction General Schematic Notes Backdating Post-repair CalibrationPage Safety Considerations OrganizationRelated Documents ChapterRevisions Electrostatic DischargeManual Revisions Firmware RevisionsIntroduction Test Equipment RequiredTest Setup Measurement TechniquesOperation Verification Tests Performance TestsElectronic Load Current-Monitoring ResistorCV Setup Constant Voltage CV TestsVoltage Programming and Readback Accuracy CV Load EffectCV Source Effect CV Noise PardTransient Recovery Time CC SetupConstant Current CC Tests Current Programming and Readback AccuracyCC Load and Line Regulation Current Sink -CC OperationLow Range Current Readback Accuracy CC Load Effect CC Source EffectPerformance Test Equipment Form CC Noise PardPerformance Test Record Forms Iout + 0.25 mA Iout Iout + 4.3 mAIout Iout + 2.3 mA Troubleshooting Overall Troubleshooting Flow ChartsTest Equipment Required for Troubleshooting Type Purpose Recommended ModelSheet 1. Main Flowchart Sheet 2. Main Flowchart Sheet 3. Main Flowchart Sheet 4. OV at Turn-On Sheet 5. OV at Turn-On Sheet 6. FS Indicated but Fuse OK Sheet 7. No Output Voltage Sheet 8. No Output Voltage Sheet 9 No Output Voltage Sheet 10. No Current Limit Sheet 11. Unit Does Not OV Sheet 12. High Output Voltage Specific Troubleshooting Procedures Power-on Self-test FailuresSelf-Test Error Codes/Messages Error Code Description Probable CauseCV/CC Status Annunciators Troubleshooting Bias and Rail VoltagesBias and Reference Voltages Bias Test Point Common MeasurementJ307 Voltage Measurements Voltage Measurements at J307 A2 Interface to A1 Main boardDisabling Protection Features Manual Fan Speed ControlPost-repair Calibration Inhibit Calibration SwitchCalibration Password ROM Upgrade Upgrade ProcedureInitialization Identifying the FirmwareList of Required Tools Disassembly ProceduresRemote sense leads before attempting disassembly Front Panel Assembly, Removal and Replacement Cover, Removal and ReplacementA2 Interface Board, Removal and Replacement S1 Line Switch, Removal and Replacement A3 Front Panel Board, Removal and ReplacementT1 Power Transformer, Removal and Replacement A1 Main Control BoardLine Voltage Wiring Transformer WiringConnector Signal Description Interface SignalsPower Supply Interface signals A3 Front Panel Circuits A2 Interface CircuitsPrimary Interface Secondary InterfaceA2/A3 Block Diagram Power Circuits A1 Main Board CircuitsA1 Block Diagram Control Circuits Principles of Operation Page Chassis, Electrical Designator Model PartNumber Qty DescriptionChassis, Mechanical Designator Model Part Number Qty DescriptionMechanical Parts ldentification A1 Control Board PC Board Assembly Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Relay Option #760 Binding Post Option #020A5 AC input/RFI Board General Schematic Notes Model-dependent ComponentsDiagrams A1 Board Component Locations R434 825 R500 175 325 R435 R505 A1 Board Component Locations A4 and A6 Board Component Locations A1 Board schematic sheet A1 Board schematic sheet A1 Board schematic sheet A6 Relay Option Board schematic Index Index
Related manuals
Manual 103 pages 34 Kb Manual 83 pages 60.43 Kb

6632B, 6633B, 66332A, 6634B specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.