Agilent Technologies 6634B, 66332A, 6633B, 6632B service manual Sheet 12. High Output Voltage

Page 36

3 - Troubleshooting

Disable the OV capability by

shorting R351. After the

protection is disabled, program

the output voltage to zero,

current to full scale and Output ON. If the unit is in "Protect" mode, Press Protect Clear. The output should now go high and not trip the OV.

*V_mon should be approximately 6632B or 66332A Vout/4.25

6633B Vout/10.52

6634B Vout/21

Is the CV

annunciator on

?

Yes

Measure voltage at the base of Q303 with respect to its' emitter

Voltage <0.6V

?

Yes

 

Vmon,

 

 

 

Check Voltage Monitor

No

U315B-7,

 

No

 

Amplifier, U315B

 

 

OK ?*

 

 

 

circuit

 

 

 

 

 

 

Yes

CV_Prog,

R401 No A2 Interface Board

~0V

?

Yes

Check Voltage Control

U315A, circuit

No

Troubleshoot Voltage

Gain Stage

 

Troubleshoot Output

Stage

Figure 3-1 Sheet 12. High Output Voltage

36

Image 36
Contents Agilent Part No Microfiche No September Warranty Information CertificationSafety Summary Before Applying PowerSafety Symbol Definitions Symbol DescriptionPrinting History Instrument IdentificationTable of Contents Initialization ROM Upgrade Disassembly ProceduresIntroduction General Schematic Notes Backdating Post-repair CalibrationPage Safety Considerations OrganizationRelated Documents ChapterRevisions Electrostatic DischargeManual Revisions Firmware RevisionsIntroduction Test Equipment RequiredTest Setup Measurement TechniquesOperation Verification Tests Performance TestsElectronic Load Current-Monitoring ResistorCV Setup Constant Voltage CV TestsVoltage Programming and Readback Accuracy CV Load EffectCV Source Effect CV Noise PardTransient Recovery Time CC SetupConstant Current CC Tests Current Programming and Readback AccuracyCurrent Sink -CC Operation Low Range Current Readback AccuracyCC Load and Line Regulation CC Load Effect CC Source EffectPerformance Test Equipment Form CC Noise PardPerformance Test Record Forms Iout + 0.25 mA Iout Iout + 4.3 mAIout Iout + 2.3 mA Troubleshooting Overall Troubleshooting Flow ChartsTest Equipment Required for Troubleshooting Type Purpose Recommended ModelSheet 1. Main Flowchart Sheet 2. Main Flowchart Sheet 3. Main Flowchart Sheet 4. OV at Turn-On Sheet 5. OV at Turn-On Sheet 6. FS Indicated but Fuse OK Sheet 7. No Output Voltage Sheet 8. No Output Voltage Sheet 9 No Output Voltage Sheet 10. No Current Limit Sheet 11. Unit Does Not OV Sheet 12. High Output Voltage Specific Troubleshooting Procedures Power-on Self-test FailuresSelf-Test Error Codes/Messages Error Code Description Probable CauseCV/CC Status Annunciators Troubleshooting Bias and Rail VoltagesBias and Reference Voltages Bias Test Point Common MeasurementJ307 Voltage Measurements Voltage Measurements at J307 A2 Interface to A1 Main boardDisabling Protection Features Manual Fan Speed ControlInhibit Calibration Switch Calibration PasswordPost-repair Calibration ROM Upgrade Upgrade ProcedureInitialization Identifying the FirmwareDisassembly Procedures Remote sense leads before attempting disassemblyList of Required Tools Cover, Removal and Replacement A2 Interface Board, Removal and ReplacementFront Panel Assembly, Removal and Replacement S1 Line Switch, Removal and Replacement A3 Front Panel Board, Removal and ReplacementT1 Power Transformer, Removal and Replacement A1 Main Control BoardLine Voltage Wiring Transformer WiringInterface Signals Power Supply Interface signalsConnector Signal Description A3 Front Panel Circuits A2 Interface CircuitsPrimary Interface Secondary InterfaceA2/A3 Block Diagram Power Circuits A1 Main Board CircuitsA1 Block Diagram Control Circuits Principles of Operation Page Chassis, Electrical Designator Model PartNumber Qty DescriptionChassis, Mechanical Designator Model Part Number Qty DescriptionMechanical Parts ldentification A1 Control Board PC Board Assembly Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Replaceable Parts Binding Post Option #020 A5 AC input/RFI BoardRelay Option #760 General Schematic Notes Model-dependent ComponentsDiagrams A1 Board Component Locations R434 825 R500 175 325 R435 R505 A1 Board Component Locations A4 and A6 Board Component Locations A1 Board schematic sheet A1 Board schematic sheet A1 Board schematic sheet A6 Relay Option Board schematic Index Index
Related manuals
Manual 103 pages 34 Kb Manual 83 pages 60.43 Kb

6632B, 6633B, 66332A, 6634B specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.