Texas Instruments TRF1500 manual Introduction

Page 11

SWRA004A

Introduction

The TRF1500 is a dual-band/dual-mode Personal Communications System (PCS) receiver for cellular telephones operating dual mode (analog and digital) in the 800 MHz band and single mode (digital) in the 1900 MHz band. The TRF1500 consists of a low noise amplifier (LNA) and mixer for each band. For image rejection, the low-band receiver relies on an off-chip image rejection filter between the LNA and mixer while the high- band receiver uses an image rejection mixer. The device operates from a single 3.75 volt supply and is controlled by six digital CMOS control lines. The digital control offers a wide range of control states, including a sleep mode where the device typically draws less than 5A.

Additionally, the local oscillator (LO) inputs have buffered outputs that can be used in either single-ended or differential mode for a phase-locked-loop (PLL) configuration. A state is also available that allows the low-band LO to serve as the high-band LO through a mode-selectable frequency doubler.

A wide-band mixer is also available for transmit loop architectures which are commonly used in advanced mobile phone systems, global systems for mobile communications and other digital systems.

The TRF1500 is available in a 48-pin plastic thin quad flatpack package and is characterized for operation from -40C to 85C operating free-air temperature.

Please refer to the data sheet for the TRF1500 (TI literature number SLWS041A) for detailed information on the device specifications and refer to the users guide for test instructions (TI literature number SWRA004A).

12

TRF1500 Integrated Dual-Band RF Receiver User’s Guide

Image 11
Contents TRF1500 Integrated Dual-Band RF Receiver User’s Guide Important Notice Trademarks PIC Telephone Contents Appendix a Test Bench Configuration Tables FiguresAbstract TRF1500 Integrated Dual-Band RF Receiver User’s GuideIngl E Chip Anal OG AS E B Product SupportWorld Wide Web Related DocumentationIntroduction Board Design and Impedance Matching Design ConsiderationsExternal Components TRF 1500 Dual-Band Receiver TRF1500 Dual-Band Receiver Block DiagramPin Number Name Description Pin DescriptionsStrong Signal Control State and the Corresponding Active Circuits TRF1500 Control StateCascaded Block Diagram of the Low-Band Receiver Section Low-Band LNA Turn on Time Low-Band LNALow-Band LNA Output Low-Band LNA InputSurface Acoustic Wave SAW Filter Low-Band LNA Output ConfigurationLow-Band Mixer RF Input Low-Band MixerLow-Band if Output Low-Band Mixer LO InputLow-Band LO Buffer Amplifier Output Low-Band if Output ConfigurationLow-Band Buffer Amplifier Output Configuration LB LNA, LB Mixer, SAW Filter, and LB if Amp Parameters LOW-Band Cascaded Power Conversion GainLow-Band Cascaded Test Guide Low-Band Cascaded Power Conversion Gain Reduction Low-Band Cascaded Noise Figure TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Cascaded LO Input Return Loss Low-Band Cascaded RF Input Return LossLow-Band Power Leakage LO In to RF LOW Band LO Buffer Output PowerLow-Band Cascaded Third Order Input Intercept Point IIP3 Low-Band Cascaded 1dB RF Input Compression Point Low-Band Cascaded 1dB Blocking Point Block Diagram of the High-Band Receiver Section High-Band LO Input High-Band RF InputHigh-Band LO Frequency Doubler Driven Configuration High-Band if Output High-Band if Output ConfigurationHigh-Band LO Buffer Amplifier Output High-Band LO Buffer Amplifier Output ConfigurationHB LNA, HB mixer, HB if amp High-Band Cascaded Power Conversion GainHigh-Band Cascaded Test Guide High-Band Cascaded Power Conversion Gain Reduction High-Band Cascaded Image Rejection High-Band Cascaded Noise Figure High-Band Cascaded RF Input Return Loss High-Band LO Buffer Output Power High-Band Cascaded Third Order Input Intercept Point IIP3 High-Band Cascaded Power Leakage LO In to RFHigh-Band Cascaded 1dB Input Compression Point High-Band Cascaded 2X2 Spur Performance High Band 3X3 Spur Performance Low-Band and High-Band Transmit Mixer RF Input Low-Band and High-Band TransmitLow- and High-Band Transmit Mixer Low- and High-Band Transmit Mixer if Output Configuration Low- and High-Band Transmit Mixer RF Input ConfigurationLow-Band Transmit Performance Parameters Low-Band Transmit Mixer Power Conversion GainLow-Band Transmit Mixer Test Guide Low-Band Transmit Mixer Noise Figure Low-Band Transmit Mixer Input Return Loss Low-Band Transmit Mixer Power Leakage TX In to LO Low-Band Transmit Mixer Power Leakage LO In to TXLow-Band Transmit Mixer 1dB Input Compression Point See Appendix a Test Bench Setups See Appendix a Test Bench Setups High-Band Transmit Mixer Performance Parameters High-Band Transmit Mixer Test GuideLow-Band LNA Parameters Low-Band LNA Stand-Alone Test GuideLow-Band LNA Gain Low-Band LNA Input Return LossLow-Band LNA 1dB Input Compression Point Low-Band LNA Output Return LossLow-Band LNA Isolation Low-Band LNA Noise Figure Low-Band LNA Third Order Input Intercept Point IIP3 TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer Parameters Low-Band Receiver Mixer Power Conversion GainLow-Band Receiver Mixer Stand-Alone Test Guide Low-Band Receiver Mixer Input Return Loss Low-Band Receiver Mixer Noise Figure Low-Band Receiver Mixer Power Leakage LO In to RFTRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer 1dB RF Input Compression Point 12.2 11.4 10.4 ←1dB Compression Point TRF1500 Integrated Dual-Band RF Receiver User’s Guide Appendix a Test Bench Configuration Test Bench Setup Noise Figure Test Bench Setup Power Leakage RF In to LO In Measurements Test Bench Setup LNA 1dB Input Compression Point