Texas Instruments TRF1500 manual High-Band Cascaded Power Leakage LO In to RF

Page 45

SWRA004A

High-Band Cascaded: Power Leakage LO In to RF In

Control state: 111001

SEE APPENDIX A: TEST BENCH SETUPS

Test setup Figure 23

The LO leakage at the RF port is measured at the low band RF input port J20. Power leakage is a measure of power in dBm that couples to the RF port. The measurement is performed using a RF source and a spectrum analyzer.

1)Set the LO source frequency and input power (see Table 4). Connect the LO source to the EVM LO input port, J12.

2)Set the spectrum analyzer to measure at the LO frequency (see Table 4).

3)Connect the RF Port, J20, to the spectrum analyzer.

4)Measure the LO leakage power.

High-Band Cascaded: Third Order Input Intercept Point (IIP3)

Control state: 111001

SEE APPENDIX A: TEST BENCH SETUPS

Test setup Figure 21

The third order input intercept point is the level of the RF input power at which the output power levels of the undesired intermodulation products and the desired IF products are equal. The measurement is performed using three RF sources and a spectrum analyzer.

1)Set the first RF source input power (RF Pin) and frequency (F1) (see Table 4).

2)Set the second RF source frequency to the first RF frequency plus 120kHz; F2.

3)Using a RF combiner, connect the RF sources to the EVM RF input port, J20.

4)Set the LO source frequency and input power (see Table 4). Connect the LO source to the EVM LO input port, J12.

5)Set the spectrum analyzer to measure at the IF frequency (FIF) (see Table 4).

46

TRF1500 Integrated Dual-Band RF Receiver User’s Guide

Image 45
Contents TRF1500 Integrated Dual-Band RF Receiver User’s Guide Important Notice Trademarks PIC Telephone Contents Appendix a Test Bench Configuration Tables FiguresAbstract TRF1500 Integrated Dual-Band RF Receiver User’s GuideIngl E Chip Anal OG AS E B Product SupportWorld Wide Web Related DocumentationIntroduction Design Considerations External ComponentsBoard Design and Impedance Matching TRF 1500 Dual-Band Receiver TRF1500 Dual-Band Receiver Block DiagramPin Number Name Description Pin DescriptionsStrong Signal Control State and the Corresponding Active Circuits TRF1500 Control StateCascaded Block Diagram of the Low-Band Receiver Section Low-Band LNA Turn on Time Low-Band LNALow-Band LNA Output Low-Band LNA InputSurface Acoustic Wave SAW Filter Low-Band LNA Output ConfigurationLow-Band Mixer RF Input Low-Band MixerLow-Band if Output Low-Band Mixer LO InputLow-Band LO Buffer Amplifier Output Low-Band if Output ConfigurationLow-Band Buffer Amplifier Output Configuration LOW-Band Cascaded Power Conversion Gain Low-Band Cascaded Test GuideLB LNA, LB Mixer, SAW Filter, and LB if Amp Parameters Low-Band Cascaded Power Conversion Gain Reduction Low-Band Cascaded Noise Figure TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Cascaded LO Input Return Loss Low-Band Cascaded RF Input Return LossLow-Band Power Leakage LO In to RF LOW Band LO Buffer Output PowerLow-Band Cascaded Third Order Input Intercept Point IIP3 Low-Band Cascaded 1dB RF Input Compression Point Low-Band Cascaded 1dB Blocking Point Block Diagram of the High-Band Receiver Section High-Band LO Input High-Band RF InputHigh-Band LO Frequency Doubler Driven Configuration High-Band if Output High-Band if Output ConfigurationHigh-Band LO Buffer Amplifier Output High-Band LO Buffer Amplifier Output ConfigurationHigh-Band Cascaded Power Conversion Gain High-Band Cascaded Test GuideHB LNA, HB mixer, HB if amp High-Band Cascaded Power Conversion Gain Reduction High-Band Cascaded Image Rejection High-Band Cascaded Noise Figure High-Band Cascaded RF Input Return Loss High-Band LO Buffer Output Power High-Band Cascaded Third Order Input Intercept Point IIP3 High-Band Cascaded Power Leakage LO In to RFHigh-Band Cascaded 1dB Input Compression Point High-Band Cascaded 2X2 Spur Performance High Band 3X3 Spur Performance Low-Band and High-Band Transmit Low- and High-Band Transmit MixerLow-Band and High-Band Transmit Mixer RF Input Low- and High-Band Transmit Mixer if Output Configuration Low- and High-Band Transmit Mixer RF Input ConfigurationLow-Band Transmit Mixer Power Conversion Gain Low-Band Transmit Mixer Test GuideLow-Band Transmit Performance Parameters Low-Band Transmit Mixer Noise Figure Low-Band Transmit Mixer Input Return Loss Low-Band Transmit Mixer Power Leakage TX In to LO Low-Band Transmit Mixer Power Leakage LO In to TXLow-Band Transmit Mixer 1dB Input Compression Point See Appendix a Test Bench Setups See Appendix a Test Bench Setups High-Band Transmit Mixer Performance Parameters High-Band Transmit Mixer Test GuideLow-Band LNA Gain Low-Band LNA Stand-Alone Test GuideLow-Band LNA Input Return Loss Low-Band LNA ParametersLow-Band LNA Output Return Loss Low-Band LNA IsolationLow-Band LNA 1dB Input Compression Point Low-Band LNA Noise Figure Low-Band LNA Third Order Input Intercept Point IIP3 TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer Power Conversion Gain Low-Band Receiver Mixer Stand-Alone Test GuideLow-Band Receiver Mixer Parameters Low-Band Receiver Mixer Input Return Loss Low-Band Receiver Mixer Noise Figure Low-Band Receiver Mixer Power Leakage LO In to RFTRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer 1dB RF Input Compression Point 12.2 11.4 10.4 ←1dB Compression Point TRF1500 Integrated Dual-Band RF Receiver User’s Guide Appendix a Test Bench Configuration Test Bench Setup Noise Figure Test Bench Setup Power Leakage RF In to LO In Measurements Test Bench Setup LNA 1dB Input Compression Point