Texas Instruments TRF1500 manual High-Band Transmit Mixer Test Guide

Page 58

SWRA004A

High-Band Transmit Mixer Test Guide

This section involves measuring the High Band Transmit Mixer performance. All tests apply for an IF output terminated into a 1 kΩ differential load. To match the IF output to the 50 Ω test equipment a transformer balun is used. All unused ports are terminated into 50 Ω. Testing the performance of the high transmit mixer can be performed two ways. One being the LO Doubler driven, no EVM modification needed. Two LO is directly driven, before measuring the high band transmit mixer performance the EVM board must be modified as follows: Remove L40 and C41, add C24. This enables the high band transmit to be directly driven by an LO source.

Table 6. High-Band Transmit Mixer Performance Parameters

PARAMETERS

Min

Typ

Max

UNIT

 

 

 

 

 

Tx Mixer Input Frequency

1850

1880

1910

MHz

LO Frequency Directly Driven

1733

1763

1793

MHz

LO Frequency Doubler Driven

983.5

998.5

1013.5

MHz

Tx Mixer Output Frequency

 

117

 

MHz

LO Input Power

 

-5.0

 

dBm

RF Input Power

 

-30

 

dBm

 

 

 

 

 

Power Conversion Gain

 

9.9

 

dB

Noise Figure

 

12.7

 

dB

RF Input Return Loss

 

16.6

 

dB

Power Leakage Tx In to LO In

 

-55.5

 

dB

Power Leakage LO In to Tx In

 

-69.5

 

dB

1dB Input Compression Point

 

-15.7

 

dBm

Second Order Input Intercept point (IIP2)

 

27

 

dBm

Third Order Input Intercept Point(IIP3)

 

-6.7

 

dBm

To test the High Band Transmit Mixer parameters use the procedure for the Low Band Transmit Mixer, with the following exception: Control state mode 110100 and when testing the Third order intercept point the RF signal separation is 120kHz.

TRF1500 Integrated Dual-Band RF Receiver User’s Guide

59

Image 58
Contents TRF1500 Integrated Dual-Band RF Receiver User’s Guide Important Notice Trademarks PIC Telephone Contents Appendix a Test Bench Configuration Figures TablesTRF1500 Integrated Dual-Band RF Receiver User’s Guide AbstractProduct Support Ingl E Chip Anal OG AS E BRelated Documentation World Wide WebIntroduction External Components Design ConsiderationsBoard Design and Impedance Matching TRF1500 Dual-Band Receiver Block Diagram TRF 1500 Dual-Band ReceiverPin Descriptions Pin Number Name DescriptionStrong Signal TRF1500 Control State Control State and the Corresponding Active CircuitsCascaded Block Diagram of the Low-Band Receiver Section Low-Band LNA Low-Band LNA Turn on TimeLow-Band LNA Input Low-Band LNA OutputLow-Band LNA Output Configuration Surface Acoustic Wave SAW FilterLow-Band Mixer Low-Band Mixer RF InputLow-Band Mixer LO Input Low-Band if OutputLow-Band if Output Configuration Low-Band LO Buffer Amplifier OutputLow-Band Buffer Amplifier Output Configuration Low-Band Cascaded Test Guide LOW-Band Cascaded Power Conversion GainLB LNA, LB Mixer, SAW Filter, and LB if Amp Parameters Low-Band Cascaded Power Conversion Gain Reduction Low-Band Cascaded Noise Figure TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Cascaded RF Input Return Loss Low-Band Cascaded LO Input Return LossLOW Band LO Buffer Output Power Low-Band Power Leakage LO In to RFLow-Band Cascaded Third Order Input Intercept Point IIP3 Low-Band Cascaded 1dB RF Input Compression Point Low-Band Cascaded 1dB Blocking Point Block Diagram of the High-Band Receiver Section High-Band RF Input High-Band LO InputHigh-Band LO Frequency Doubler Driven Configuration High-Band if Output Configuration High-Band if OutputHigh-Band LO Buffer Amplifier Output Configuration High-Band LO Buffer Amplifier OutputHigh-Band Cascaded Test Guide High-Band Cascaded Power Conversion GainHB LNA, HB mixer, HB if amp High-Band Cascaded Power Conversion Gain Reduction High-Band Cascaded Image Rejection High-Band Cascaded Noise Figure High-Band Cascaded RF Input Return Loss High-Band LO Buffer Output Power High-Band Cascaded Power Leakage LO In to RF High-Band Cascaded Third Order Input Intercept Point IIP3High-Band Cascaded 1dB Input Compression Point High-Band Cascaded 2X2 Spur Performance High Band 3X3 Spur Performance Low- and High-Band Transmit Mixer Low-Band and High-Band TransmitLow-Band and High-Band Transmit Mixer RF Input Low- and High-Band Transmit Mixer RF Input Configuration Low- and High-Band Transmit Mixer if Output ConfigurationLow-Band Transmit Mixer Test Guide Low-Band Transmit Mixer Power Conversion GainLow-Band Transmit Performance Parameters Low-Band Transmit Mixer Noise Figure Low-Band Transmit Mixer Input Return Loss Low-Band Transmit Mixer Power Leakage LO In to TX Low-Band Transmit Mixer Power Leakage TX In to LOLow-Band Transmit Mixer 1dB Input Compression Point See Appendix a Test Bench Setups See Appendix a Test Bench Setups High-Band Transmit Mixer Test Guide High-Band Transmit Mixer Performance ParametersLow-Band LNA Input Return Loss Low-Band LNA Stand-Alone Test GuideLow-Band LNA Gain Low-Band LNA ParametersLow-Band LNA Isolation Low-Band LNA Output Return LossLow-Band LNA 1dB Input Compression Point Low-Band LNA Noise Figure Low-Band LNA Third Order Input Intercept Point IIP3 TRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer Stand-Alone Test Guide Low-Band Receiver Mixer Power Conversion GainLow-Band Receiver Mixer Parameters Low-Band Receiver Mixer Input Return Loss Low-Band Receiver Mixer Power Leakage LO In to RF Low-Band Receiver Mixer Noise FigureTRF1500 Integrated Dual-Band RF Receiver User’s Guide Low-Band Receiver Mixer 1dB RF Input Compression Point 12.2 11.4 10.4 ←1dB Compression Point TRF1500 Integrated Dual-Band RF Receiver User’s Guide Appendix a Test Bench Configuration Test Bench Setup Noise Figure Test Bench Setup Power Leakage RF In to LO In Measurements Test Bench Setup LNA 1dB Input Compression Point