Avaya P333R-LB manual Flow Control, Priority, MAC Address

Models: P333R-LB

1 218
Download 218 pages 57.22 Kb
Page 73
Image 73

Chapter 11 Avaya P330 Layer 2 Features

Flow Control

The process of adjusting the flow of data from one device to another to ensure that the receiving device can handle all of the incoming data. This is particularly important where the sending device is capable of sending data much faster than the receiving device can receive it.

There are many flow control mechanisms. One of the most common flow control protocols, used in Ethernet full-duplex, is called xon-xoff. In this case, the receiving device sends a an xoff message to the sending device when its buffer is full. The sending device then stops sending data. When the receiving device is ready to receive more data, it sends an xon signal.

Priority

By its nature, network traffic varies greatly over time, so short-term peak loads may exceed the switch capacity. When this occurs, the switch must buffer frames until there is enough capacity to forward them to the appropriate ports.

This, however, can interrupt time-sensitive traffic streams, such as Voice and other converged applications. These packets need to be forwarded with the minimum of delay or buffering. In other words, they need to be given high priority over other types of networkl traffic.

Priority determines in which order packets are sent on the network and is a key part of QoS (Quality of Service). The IEEE standard for priority on Ethernet networks is 802.1p.

Avaya P330 switches supports two internal priority queues – the High Priority queue and the Normal Priority queue.

Packets tagged with priorities 4-7 are mapped to the High Priority queue; packets tagged with priorities 0-3 are mapped to the Normal Priority queue. This classification is based either on the packet’s original priority tag, or, if the packet arrives at the port untagged, based on the priority configured for the ingress port (set using the set port level CLI command).

In cases where the packet was received tagged, this priority tag is retained when the packet is transmitted through a tagging port.

In cases where the priority is assigned based on the ingress priority of the port, then on an egress tagging port the packet will carry either priority 0 or priority 4, depending on the queue it was assigned to (High Priority=4, Normal Priority=0).

MAC Address

The MAC address is a unique 48-bit value associated with any network adapter. MAC addresses are also known as hardware addresses or physical addresses. They uniquely identify an adapter on a LAN.

MAC addresses are 12-digit hexadecimal numbers (48 bits in length). By convention, MAC addresses are usually written in one of the following two formats:

MM:MM:MM:SS:SS:SS

Avaya P333R-LB User’s Guide

59

Page 73
Image 73
Avaya P333R-LB manual Flow Control, Priority, MAC Address

P333R-LB specifications

The Avaya P333R-LB is a robust and versatile switch that is part of Avaya's portfolio aimed at enterprise networking solutions. This switch is designed to enhance the performance and scalability of network infrastructure while ensuring high availability and reliability.

One of the main features of the P333R-LB is its Layer 3 switching capability, which allows for efficient routing within an organization's network. This capability is particularly beneficial for organizations with multiple VLANs, as it simplifies the routing process and ensures that data packets are transmitted in the most efficient manner possible.

The P333R-LB is equipped with advanced Quality of Service (QoS) features to prioritize traffic based on the type of application being used. This ensures that critical applications, such as VoIP and video conferencing, receive the necessary bandwidth and low latency required for optimal performance. Additionally, it supports both IPv4 and IPv6 protocols, making it adaptable to a variety of networking environments.

Another important feature of the Avaya P333R-LB is its stackable design. This allows multiple switches to be interconnected, creating a single logical unit. This stacking capability not only simplifies management but also increases overall network capacity and redundancy. In case of a hardware failure, the stack can continue operating without interruption, maintaining network integrity and service continuity.

The switch also integrates advanced security features, including support for MAC filtering, access control lists, and port security. These features help to safeguard network resources from unauthorized access and potential threats. Moreover, the P333R-LB supports 802.1X port-based authentication, which adds an additional layer of security during user access to the network.

The Avaya P333R-LB comes with multiple Gigabit Ethernet ports, allowing for high-speed connectivity to devices such as servers, workstations, and IP phones. This ensures that all devices on the network can communicate effectively, supporting the demands of modern enterprise environments.

For management and monitoring, the P333R-LB offers a user-friendly web interface along with SNMP support, enabling network administrators to easily configure settings and monitor network performance. This simplicity in management is crucial for IT teams that need to ensure optimal network performance while minimizing downtime.

In summary, the Avaya P333R-LB is a feature-rich, scalable, and reliable switch that meets the needs of demanding enterprise networks. With its advanced technologies, QoS support, stackable design, robust security features, and high-speed connectivity options, the P333R-LB is positioned to support a wide range of applications and enhance overall network performance.