Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

When you enable routing for a given protocol on the bridge-group virtual interface, packets coming from a routed interface but destined for a host in a bridged domain are routed to the bridge-group virtual interface, and are forwarded to the corresponding bridged interface. All traffic routed to the bridge-group virtual interface is forwarded to the corresponding bridge group as bridged traffic. All routable traffic received on a bridged interface is routed to other routed interfaces as if it is coming directly from the bridge-group virtual interface.

To create a bridge-group virtual interface, use the following command in interface configuration mode:

Command

Purpose

 

 

interface bvi bridge-group

Enables a bridge-group virtual interface.

 

 

When you intend to bridge and route a given protocol in the same bridge group, you must configure the network-layer attributes of the protocol on the bridge-group virtual interface. Do not configure protocol attributes on the bridged interfaces. No bridging attributes can be configured on the bridge-group virtual interface.

Although it is generally the case that all bridged segments belonging to a bridge group are represented as a single segment or network to the routing protocol, there are situations where several individual networks coexist within the same bridged segment. To make it possible for the routed domain to learn about the other networks behind the bridge-group virtual interface, configure a secondary address on the bridge-group virtual interface to add the corresponding network to the routing process.

Configuring Protocols for Routing or Bridging

When integrated routing and bridging is enabled, the default route/bridge behavior in a bridge group is to bridge all packets.

You could then explicitly configure the bridge group to route a particular protocol, so that routable packets of this protocol are routed, while nonroutable packets of this protocol or packets for protocols for which the bridge group is not explicitly configured to route will be bridged.

You could also explicitly configure the bridge group so that it does not bridge a particular protocol, so that routable packets of this protocol are routed when the bridge is explicitly configured to route this protocol, and nonroutable packets are dropped because bridging is disabled for this protocol.

Note Packets of nonroutable protocols such as LAT are only bridged. You cannot disable bridging for the nonroutable traffic.

To configure specific protocols to be routed or bridged in a bridge group, use one or more of the following commands in global configuration mode:

Command

Purpose

 

 

 

bridge

bridge-group route protocol

Specifies a protocol to be routed in a bridge group.

 

 

 

no

bridge bridge-group route protocol

Specifies that a protocol is not to be routed in a bridge group.

 

 

 

bridge

bridge-group bridge protocol

Specifies that a protocol is to be bridged in the bridge group.

 

 

 

no

bridge bridge-group bridge protocol

Specifies that a protocol is not to be bridged in the bridge group.

 

 

 

 

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-41

Page 19
Image 19
Cisco Systems BC-23 manual Configuring Protocols for Routing or Bridging, BC-41

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.