Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

The purpose of placing network interfaces into a bridge group is twofold:

To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet’s destination address is known in the bridge table, it is forwarded on a single interface in the bridge group. If the packet’s destination is unknown in the bridge table, it is flooded on all forwarding interfaces in the bridge group. The bridge places source addresses in the bridge table as it learns them during the process of bridging.

To participate in the spanning-tree algorithm by receiving, and in some cases transmitting, BPDUs on the LANs to which they are attached. A separate spanning process runs for each configured bridge group. Each bridge group participates in a separate spanning tree. A bridge group establishes a spanning tree based on the BPDUs it receives on only its member interfaces.

For SRT bridging, if the Token Ring and serial interfaces are in the same bridge group, changing the serial encapsulation method causes the state of the corresponding Token Ring interface to be reinitialized. Its state will change from “up” to “initializing” to “up” again within a few seconds.

After you assign a bridge group number and define a Spanning-Tree Protocol, assign each network interface to a bridge group by using the following command in interface configuration mode:

Command

Purpose

 

 

bridge-group bridge-group

Assigns a network interface to a bridge group.

 

 

Choosing the OUI for Ethernet Type II Frames

For SRT bridging networks, you must choose the organizational unique identifier (OUI) code that will be used in the encapsulation of Ethernet Type II frames across Token Ring backbone networks. To choose the OUI, use the following command in interface configuration mode:

Command

Purpose

 

 

ethernet-transit-oui [90-compatible

Selects the Ethernet Type II OUI encapsulation code.

standard cisco]

 

 

 

Transparently Bridged VLANs for ISL

Traditionally, a bridge group is an independently bridged subnetwork. In this definition, bridge groups cannot exchange traffic with other bridge groups, nor can they multiplex or de-multiplex different streams of bridged traffic. The transparently bridged VLAN feature in Cisco IOS software permits a bridge group to extend outside the router to identify traffic switched within the bridge group.

While bridge groups remain internal organizations of network interfaces functioning as distinct bridges within a router, transparent bridging on subinterfaces permits bridge groups to be used to multiplex different streams of bridged traffic on a LAN or HDLC serial interface. In this way, bridged traffic may be switched out of one bridge group on one router, multiplexed across a subinterface, and demultiplexed into a second bridge group on a second router. Together, the first bridge group and the second bridge group form a transparently bridged VLAN. This approach can be extended to impose logical topologies upon transparently bridged networks.

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-30

Page 8
Image 8
Cisco Systems BC-23 Transparently Bridged VLANs for ISL, Choosing the OUI for Ethernet Type II Frames, Command Purpose

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.