Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Examples

Figure 21 Bridged Subnetworks with Domains

Bridged Subnetwork

 

 

 

Domain 1

 

 

 

Domain 2

Bridged Subnetwork

 

 

 

 

 

 

 

To other

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parts of BSN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E0

E1

 

E2

 

E3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3

3

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F0

 

 

 

 

 

 

 

 

 

 

E1

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

Router A

 

 

 

 

FDDI

 

 

 

 

Router B

1

 

 

 

To other

 

 

 

 

 

 

 

 

 

 

 

F0

 

 

 

 

E2

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

1

 

parts of BSN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To other

 

 

 

 

 

 

Domain 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parts of BSN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F0

 

2

 

 

 

 

 

 

 

 

 

 

 

Bridged Subnetwork

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Router C

2 2 2

S0 S1 S2

Circuit group 7

Bridged Subnetwork

Circuit group 4

S2

S0 S1

5

5

5

 

Router D

 

 

5

5

 

E4

 

E5

 

 

 

 

 

 

 

 

To other

parts of BSN

S2322

For proper bridging operation, the bridged subnetworks cannot have connections between them, but they can be connected to the same backbone. In this example, three of the four bridged subnetworks are connected to the FDDI backbone and each belongs to a separate domain.

Domains used in this topology allow the bridged subnetworks to be independent of one another while still bridging traffic onto the backbone destined for other connected bridged subnetworks. Domains can be used in this manner only if the bridged subnetworks have a single point of attachment to one another. In this case, the connection to the FDDI backbone is that single point of attachment.

Each router on which a domain is configured and that has a single point of attachment to the other bridged subnetworks, checks whether a BPDU on the backbone is its own. If the BPDU does not belong to the bridged subnetwork, the Cisco IOS software ignores the BPDU.

Separate bridged subnetworks, as in this example, allow spanning-tree reconfiguration of individual bridged subnetworks without disrupting bridging among the other bridged subnetworks.

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-79

Page 57
Image 57
Cisco Systems BC-23 manual BC-79, Bridged Subnetworks with Domains

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.