Configuring Transparent Bridging

Transparent and SRT Bridging Configuration Task List

To configure a VLAN on a transparently bridged network, use the following commands beginning in global configuration mode:

 

Command

Purpose

Step 1

 

 

interface type

Specifies a subinterface.

 

slot/port.subinterface-number

 

Step 2

 

 

encapsulation sde said

Specifies the IEEE 802.10 Security data exchange security association

 

 

identifier (in other words, specifies the “color”).

Step 3

 

 

bridge-group bridge-group

Associates the subinterface with an existing bridge group.

 

 

 

Transparently bridged VLANs are supported in conjunction with only the IEEE Spanning-Tree Protocol. When you logically segment a transparently bridged network into VLANs, each VLAN computes its own spanning-tree topology. Configuring each VLAN to compute its own spanning-tree topology provides much greater stability than running a single spanning tree throughout. Traffic bridged within one VLAN is unaffected by physical topology changes occurring within another VLAN.

Note The current implementation of SDE encapsulation is not recommended for serial or

Ethernet media.

Routing between ISL VLANs

Our VLAN Routing implementation is designed to operate across all router platforms. However, the Inter-Switch Link (ISL) VLAN trunking protocol currently is defined on 100 BaseTX/FX Fast Ethernet interfaces only and therefore is appropriate to the Cisco 7000 and higher-end platforms only. The IEEE

802.10protocol can run over any LAN or HDLC serial interface. VLAN traffic is fast switched. The actual format of these VLAN encapsulations are detailed in the IEEE Standard 802.10-1992 Secure Data Exchange and in the Inter-Switch Link (ISL) Protocol Specification.

Our VLAN Routing implementation treats the ISL and 802.10 protocols as encapsulation types. On a physical router interface that receives and transmits VLAN packets, you can select an arbitrary subinterface and map it to the particular VLAN “color” embedded within the VLAN header. This mapping allows you to selectively control how LAN traffic is routed or switched outside of its own VLAN domain. In the VLAN routing paradigm, a switched VLAN corresponds to a single routed subnet, and the network address is assigned to the subinterface.

To route a received VLAN packet the Cisco IOS software VLAN switching code first extracts the VLAN ID from the packet header (this is a 10-bit field in the case of ISL and a 4-byte entity known as the security association identifier in the case of IEEE 802.10), then demultiplexes the VLAN ID value into a subinterface of the receiving port. If the VLAN color does not resolve to a subinterface, the Cisco IOS software can transparently bridge the foreign packet natively (without modifying the VLAN header) on the condition that the Cisco IOS software is configured to bridge on the subinterface itself. For VLAN packets that bear an ID corresponding to a configured subinterface, received packets are then classified by protocol type before running the appropriate protocol specific fast switching engine. If the subinterface is assigned to a bridge group then non-routed packets are de-encapsulated before they are bridged. This is termed “fall-back bridging” and is most appropriate for nonroutable traffic types.

In Figure 10, Router A provides inter-VLAN connectivity between multiple Cisco switching platforms where there are three distinct virtual topologies present. For example, for VLAN 300 across the two Catalyst 1200A segments, traffic originating on LAN interface 1 is “tagged” with a VLAN ID of 300 as it is switched onto the FDDI ring. This ID allows the remote Catalyst 1200A to make an intelligent

Cisco IOS Bridging and IBM Networking Configuration Guide

BC-32

Page 10
Image 10
Cisco Systems BC-23 manual Routing between ISL VLANs, BC-32

BC-23 specifications

Cisco Systems has long been a leader in the networking industry, and its BC-23 model exemplifies the company's commitment to innovation and performance. Aimed at enhancing business operations, the BC-23 is tailored for organizations looking for robust solutions that support their digital transformation efforts.

One of the standout features of the Cisco BC-23 is its advanced networking capabilities. It supports high-speed data transmission, enabling seamless communication across networks. With multi-gigabit Ethernet ports, the BC-23 facilitates faster data rates, accommodating the increasing bandwidth demands of modern applications. This feature is particularly beneficial for businesses that rely heavily on cloud services, video conferencing, and data-heavy applications.

Security is a top priority, and the Cisco BC-23 incorporates cutting-edge security measures. Integrated threat detection and prevention systems help safeguard sensitive data from cyber threats. Additionally, the device supports secure access protocols, ensuring that only authorized users can connect to the network. This multi-layered security approach not only protects the network infrastructure but also secures the integrity of the data being transmitted.

Another significant characteristic of the BC-23 is its support for software-defined networking (SDN). This technology allows businesses to manage their networks through centralized software applications, facilitating real-time adjustments and optimizations. The flexibility afforded by SDN is especially advantageous in dynamic environments where network demands can shift rapidly.

The Cisco BC-23 also offers enhanced management features, allowing IT teams to monitor network performance and analytics effectively. This visibility into network operations enables organizations to identify potential issues before they escalate, minimizing downtime and keeping business processes smooth.

Furthermore, the BC-23 is designed for scalability. As organizations grow, their networking needs evolve, and the BC-23 can easily adapt to these changes. Businesses can add additional devices and capabilities without the need for a complete overhaul of their existing infrastructure.

With its combination of speed, security, and scalability, the Cisco Systems BC-23 is an invaluable asset for modern businesses. It stands out not just as a networking device but as a comprehensive solution that meets the demands of today's fast-paced, technology-driven environment. As companies continue to leverage digital tools for growth and efficiency, the BC-23 will undoubtedly play a significant role in their success.