FDDI Management

This is the default frame type for Novell NetWare software version 3.12 and beyond; it is also used for OSI packets on IEEE 802.x LAN networks.

Ethernet 802.3 (Ethernet Raw)

The Ethernet 802.3 frame format has an 802.3 MAC layer header (as do Ethernet

802.2frames); however, it does not contain an 802.2 LLC header. Instead, Novell IPX is fixed within the packet as the network layer protocol. This frame type – also known as Raw 802.3 – is the default frame type for Novell NetWare software before version 3.11. Since these frames do not carry the 802.2 header, they do not conform to the IEEE 802.3 specification. If you are using the Ethernet 802.3 Raw frame format, you should consider upgrading your Novell NetWare software to ensure interoperability with other communications protocols (unless your current network is not likely to be upgraded, and has no interoperability problems).

Note that IPX packets with checksums which provide data integrity (a feature of newer Novell NetWare releases) cannot be transmitted on Ethernet 802.3 networks. Note also that a single Ethernet can carry both Ethernet 802.3 and Ethernet 802.2 traffic simultaneously. The Novell server software will treat the two frame types as two logical networks (and function as an IPX router between the two networks).

Ethernet SNAP

To allow for proprietary protocols, such as IBM’s SNA protocol, the Ethernet SNAP frame was created. This frame format extended the Ethernet 802.2 packet by improving the frame’s byte alignment, and by allowing further protocol identification than the one byte LSAP protocol identifier of Ethernet 802.2 frames (which is reserved for standard protocols). Ethernet SNAP packets have an LSAP protocol ID of hex AA, indicating that they contain a SNAP (Subnetwork Access Protocol) packet. A SNAP packet, encapsulated within the Ethernet 802.2 packet, has a five byte SNAP header which is simply a five byte protocol identifier. The first three bytes of the header indicate the Organizationally Unique Identifier (OUI) – or the authority assigning the protocol ID – and the last two bytes indicate the protocol according to that authority. Note that for most protocols, the OUI is

0-0-0, and the type identifier is the standard Ethernet protocol ID. Although most Ethernet transport protocols use the Ethernet II frame format, the AppleTalk II protocol uses Ethernet SNAP (AppleTalk has its own unique OUI).

FDDI Frames

There are two legal FDDI data frame types:

FDDI 802.2

The FDDI 802.2 frame type has two headers: the FDDI header (which includes the Frame Control field that indicates the class of frame, length of the address field, and the type of FDDI frame), and the 802.2 header.

Configuring FDDI Frame Translation Settings

5-17

Page 161
Image 161
Enterasys Networks 700 manual Ethernet 802.3 Ethernet Raw, Ethernet Snap, Fddi Frames

700 specifications

Enterasys Networks, a key player in the networking and security industry, offers an extensive range of solutions, among which is the Enterasys Networks 700 series. The Enterasys 700 series is designed to meet the demands of modern networking environments while providing a robust set of features, high performance, and scalability that appeals to organizations of various sizes.

One of the main features of the Enterasys 700 series is its ability to deliver high-speed connectivity, which supports multiple Gigabit Ethernet ports. This ensures that organizations can efficiently handle bandwidth-intensive applications and a growing number of connected devices. The series is designed to facilitate seamless and reliable data transmission, making it suitable for environments that require consistent uptime and performance.

The Enterasys 700 series is built around advanced security protocols that are essential for protecting organizational data. These security features include integrated firewalls, intrusion detection systems, and comprehensive access control policies. This ensures that sensitive information remains secure from internal and external threats while providing IT administrators with the tools needed to manage security policies effectively.

Another notable characteristic of the Enterasys 700 series is its intelligent networking capabilities. The integration of advanced Quality of Service (QoS) mechanisms allows network administrators to prioritize critical applications, ensuring optimal performance for mission-critical services. This capability is especially important in environments that host multiple applications, as it empowers organizations to manage bandwidth efficiently and maintain service quality.

The Enterasys 700 series also incorporates advanced network management solutions, enabling centralized control and monitoring. This feature simplifies the administration of network resources, allowing IT teams to quickly diagnose issues and deploy solutions as needed. The user-friendly interface and comprehensive reporting tools further enhance the management experience, providing insights into network performance and health.

Furthermore, the Enterasys Networks 700 series is designed with scalability in mind. Organizations can easily expand their network infrastructure without the need for significant overhauls, accommodating future growth and technological advancements. This flexibility not only saves costs but also ensures that organizations remain competitive in an ever-evolving digital landscape.

In summary, the Enterasys Networks 700 series offers a rich suite of features and technologies that cater to modern networking needs. Its high-speed connectivity, robust security measures, intelligent networking capabilities, comprehensive management tools, and scalability make it an excellent choice for organizations looking to enhance their network infrastructure. Whether for small businesses or large enterprises, the Enterasys 700 series stands out as a reliable and versatile networking solution.