Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

Block Guide — S12EETX4KV0 V00.04

The CCIF flag indicates that there are no more commands pending. The CCIF flag is cleared when CBEIF is clear and sets automatically upon completion of all active and pending commands. The CCIF flag does not set when an active commands completes and a pending command is fetched from the command buffer. Writing to the CCIF flag has no effect on CCIF. The CCIF flag is used together with the CCIE bit in the ECNFG register to generate an interrupt request (see Figure 4-8).

1 = All commands are completed.

0 = Command in progress.

PVIOL — Protection Violation Flag.

The PVIOL flag indicates an attempt was made to program or erase an address in a protected area of the EEPROM memory during a command write sequence. The PVIOL flag is cleared by writing a “1” to PVIOL. Writing a “0” to the PVIOL flag has no effect on PVIOL. While PVIOL is set, it is not possible to launch a command or start a command write sequence.

1 = A protection violation has occurred.

0 = No failure.

ACCERR — Access Error Flag.

The ACCERR flag indicates an illegal access has occurred to the EEPROM memory caused by either a violation of the command write sequence (see section 4.1.2), issuing an illegal EEPROM command (see Table 3-4), launching the sector erase abort command terminating a sector erase operation early (see section 4.1.3.5) or the execution of a CPU STOP instruction while a command is executing (CCIF=0). The ACCERR flag is cleared by writing a “1” to ACCERR. Writing a “0” to the ACCERR flag has no effect on ACCERR. While ACCERR is set, it is not possible to launch a command or start a command write sequence. If ACCERR is set by an erase verify operation, any buffered command will not launch.

1 = Access error has occurred.

0 = No access error detected.

BLANK — Flag indicating the erase verify operation status.

When the CCIF flag is set after completion of an erase verify command, the BLANK flag indicates the result of the erase verify operation. The BLANK flag is cleared by the EEPROM module when CBEIF is cleared as part of a new valid command write sequence. Writing to the BLANK flag has no effect on BLANK.

1 = EEPROM block verified as erased.

0 = EEPROM block verified as not erased.

3.3.7 ECMD — EEPROM Command Register

The ECMD register is the EEPROM command register.

21

For More Information On This Product,

Go to: www.freescale.com

Page 21
Image 21
Freescale Semiconductor EETX4K, Block Guide warranty Ecmd Eeprom Command Register

Block Guide, EETX4K specifications

Freescale Semiconductor, a global leader in embedded processing solutions, introduced the EETX4K, a revolutionary embedded processor designed to meet the growing demands of industrial applications. The EETX4K processor is specifically engineered for high-performance, low-power systems, offering an ideal balance between performance and power consumption.

One of the main features of the EETX4K is its high level of integration. This processor houses a powerful ARM Cortex-A9 core, which allows for efficient processing capabilities while maintaining a compact architecture. This ensures that the EETX4K can operate seamlessly in various applications, including automotive systems, industrial automation, and consumer electronics.

A standout characteristic of the EETX4K is its extensive connectivity options. It supports a range of communication interfaces, such as Ethernet, SPI, I2C, UART, and USB, enabling flexible integration into various networked environments. The processor is equipped with hardware Ethernet support for Real-Time Ethernet protocols, ensuring reliable and deterministic data transfer, which is crucial for time-sensitive applications.

In addition to its connectivity features, the EETX4K supports advanced graphical processing capabilities. With integrated 3D Graphics and Video Processing Units, it can handle demanding multimedia applications, making it suitable for user interfaces in industrial machines and smart devices. This makes the EETX4K an optimal choice for applications requiring rich graphics and advanced visualization.

Another important technological aspect of the EETX4K is its robust security features. It is designed with security in mind, incorporating hardware support for secure boot and secure data storage. This ensures that sensitive information is protected against potential threats and vulnerabilities, a critical requirement in today's interconnected world.

Furthermore, the EETX4K is optimized for energy efficiency, allowing for extended operational periods in battery-powered or energy-constrained environments. With its low thermal design power (TDP), it minimizes heat generation, ensuring that systems remain reliable and efficient under various operating conditions.

In summary, the Freescale Semiconductor EETX4K is a versatile embedded processor that combines high performance, comprehensive connectivity, advanced graphics capabilities, robust security features, and energy efficiency. These attributes make it an ideal solution for a wide range of applications, paving the way for innovation across multiple industries.