3.2 Logical Data Block Addressing

(1)Block address of user space

The logical data block address number is consecutively assigned to all of the data blocks in the user space starting with 0 to the first data block.

The HDD treats sector 0, track 0, cylinder 0 as the first logical data block. The data block is allocated in ascending order of addresses in the following sequence (refer to Figure 3.5):

1)Logical data blocks are assigned in ascending order of sector number in the same track.

2)Subsequent logical data blocks are assigned in ascending order of track number in the same head. Within the same track, logical data blocks are assigned in the same way as step 1).

3)Subsequent logical data blocks are assigned to sectors in every track except the last track in ascending order of track number in the same cell. Within the same track, logical data blocks are assigned in the same way as step 1) and 2).

4)For the last track in the same cell, subsequent logical data blocks are assigned to sectors other than spare sectors in ascending order of sector number.

5)After blocks have been assigned in the same cell according to steps 1) to 4), subsequent logical data blocks are assigned in ascending order of cell number in the same way as in steps 1) to 4). Logical data blocks are assigned starting from track 0 in the next cell until the last cylinder (immediately preceding the alternate cylinder n-1 shown in Figure 3.1) of the zone except alternate cylinders in cells in the user space.

When the logical data block is allocated, some sectors (track skew and head skew) shown in Figure

3.5are provided to avoid waiting for one turn involving head and cylinder switching at the location where the track or the head is physically switched.

See Subsection 3.3.2 for defective/alternate block treatment and the logical data block allocation method in case of defective sectors exist on the disk.

(2)Alternate area

Alternate areas in the user space (spare sectors in the cell and alternate cylinders) are not included in the above logical data block addresses. Access to sectors which are allocated as an alternate block in the alternate area is made automatically by means of the HDD sector slip treatment or alternate block treatment (explained in Subsection 3.3.2), so the user does not have to worry about accessing the alternate area. The user cannot access with specifying the data block on the alternate area explicitly.

C141-E234

3-9

Page 47
Image 47
Fujitsu MAX3147FC, MAX3073FC, MAX3036FC manual Logical Data Block Addressing

MAX3147FC, MAX3036FC, MAX3073FC specifications

The Fujitsu MAX3036FC, MAX3073FC, and MAX3147FC are advanced integrated circuits that cater to a variety of high-performance applications, predominantly in the realm of communications and data transmission. Each model comes laden with unique features that help in addressing specific requirements in modern electronic systems.

The MAX3036FC, for instance, stands out due to its robust signal processing capabilities. It is particularly optimized for high-speed data communications, making it an excellent choice for applications that demand minimal latency and high data integrity. This featured IC operates within a wide voltage range, ensuring versatility in different circuit environments. It also adopts technology enabling low power consumption, an essential attribute in battery-operated devices.

In contrast, the MAX3073FC brings a distinct set of features suitable for more specialized applications. Its architecture supports a comprehensive serial data communication framework, making it ideal for designs that utilize various communication protocols, including those in industrial automation and automotive systems. The MAX3073FC supports advanced error correction mechanisms which enhance reliability, ensuring more accurate data transmission even over longer distances.

The MAX3147FC, on the other hand, focuses on integrating advanced timing and synchronization technologies. This model is particularly significant in applications that require precise timing signals, such as in telecommunications infrastructure and high-frequency trading systems. The MAX3147FC features integrated oscillators and buffers, streamlining the design process and reducing component count. Additionally, it boasts immunity to electromagnetic interference, a critical factor in maintaining signal integrity in noisy environments.

Common to all three models is Fujitsu's commitment to use cutting-edge manufacturing processes. This ensures the devices are compact, enhancing their suitability for modern designs where space is constrained. The ICs are also designed to handle varying temperature ranges, making them resilient for use in diverse environments.

Each IC is supported by comprehensive documentation and development tools that aid engineers in the rapid prototyping and deployment of their designs. The integration of these advanced features and technologies not only simplifies the design process but also accelerates time-to-market for new products. Whether addressing the demands of communication systems, industrial controls, or consumer electronics, the MAX3036FC, MAX3073FC, and MAX3147FC from Fujitsu represent exceptional flexibility and performance in the landscape of integrated circuit technology.