Celestron OMNI XLT 102 manual Motion of the Stars

Page 24

Motion of the Stars

The daily motion of the Sun across the sky is familiar to even the most casual observer. This daily trek is not the Sun moving as early astronomers thought, but the result of the Earth's rotation. The Earth's rotation also causes the stars to do the same, scribing out a large circle as the Earth completes one rotation. The size of the circular path a star follows depends on where it is in the sky. Stars near the celestial equator form the largest circles rising in the east and setting in the west. Moving toward the north celestial pole, the point around which the stars in the northern hemisphere appear to rotate, these circles become smaller. Stars in the mid- celestial latitudes rise in the northeast and set in the northwest. Stars at high celestial latitudes are always above the horizon, and are said to be circumpolar because they never rise and never set. You will never see the stars complete one circle because the sunlight during the day washes out the starlight. However, part of this circular motion of stars in this region of the sky can be seen by setting up a camera on a tripod and opening the shutter for a couple hours. The image will reveal semicircles that revolve around the pole. (This description of stellar motions also applies to the southern hemisphere except all stars south of the celestial equator move around the south celestial pole.)

Starts seen near the north celestial pole

Starts seen near the celestial equator

Starts seen looking in the opposite direction of the north celestial pole

Figure 4-2

All stars appear to rotate around the celestial poles. However, the appearance of this motion varies depending on where you are looking in the sky. Near the north celestial pole the stars scribe out recognizable circles centered on the pole (1). Stars near the celestial equator also follow circular paths around the pole. But, the complete path is interrupted by the horizon. These appear to rise in the east and set in the west (2). Looking toward the opposite pole, stars curve or arc in the opposite direction scribing a circle around the opposite pole (3).

24

Image 24
Contents Omni XLT Series Telescopes Table of Contents Astrophotography Page Omni XLT 102 Refractor Omni XLT 150 Newtonian Omni XLT 127 Schmidt-Cassegrain Setting up the Tripod Attaching the Equatorial Mount Installing the Counterweight Bar Attaching the Center Leg BraceInstalling the Counterweights Attaching the Slow Motion Control Knobs CablesAttaching the Telescope Tube to the Mount Installing the Finderscope Installing the Visual BackInstalling the Star Diagonal Installing the EyepiecesMoving the Telescope Manually Balancing the Mount in R.AAdjusting the Mount Balancing the Mount in DECAdjusting the Mount in Altitude Adjusting the Mount in AzimuthPage Page Focusing Image OrientationAligning the Finderscope Calculating MagnificationDetermining Field of View General Observing HintsCelestial Coordinate System Motion of the Stars Latitude Scale Pointing at PolarisFinding the North Celestial Pole Polar Alignment in the Southern Hemisphere Polar Alignment with the Latitude ScalePointing at Sigma Octantis Finding the South Celestial Pole SCPDeclination Drift Method of Polar Alignment Aligning the R.A. Setting Circle Using the R.A. Vernier Scale 11 Vernier ScaleObserving the Moon Lunar Observing HintsObserving the Planets Planetary Observing HintsObserving the Sun Solar Observing HintsObserving Deep Sky Objects Seeing ConditionsUsing the Lens Cap Aperture Stop with Refractor Telescopes SeeingPiggyback Photography Using Digital Cameras Eyepiece Projection for a Schmidt-Cassegrain FullLong Exposure Prime Focus Photography Planetary and Lunar Photography with Special Imagers CCD Imaging for Deep Sky Objects Terrestrial PhotographyMetering Reducing VibrationCare and Cleaning of the Optics Collimation of RefractorsCollimation of a Schmidt-Cassegrain Two 2 turnsCollimated telescope Should appear Symmetrical with Collimation of a Newtonian Aligning the Secondary MirrorBoth mirrors aligned with your eye looking into the focuser Night Time Star Collimating As a Series 1 # Page Page Appendix a Technical Specifications Appendix B Glossary of Terms Page Page Page Page Page Page Page Page Celestron Two Year Warranty