Celestron OMNI XLT 102 manual Collimation of a Newtonian, Aligning the Secondary Mirror

Page 44

Perfect collimation will yield a star image very symmetrical just inside and outside of focus. In addition, perfect collimation delivers the optimal optical performance specifications that your telescope is built to achieve.

If seeing (i.e., air steadiness) is turbulent, collimation is difficult to judge. Wait until a better night if it is turbulent or aim to a steadier part of the sky. A steadier part of the sky is judged by steady versus twinkling stars.

Collimation of a Newtonian

The optical performance of most Newtonian reflecting telescopes can be optimized by re-collimating (aligning) the telescope's optics, as needed. To collimate the telescope simply means to bring its optical elements into balance. Poor collimation will result in optical aberrations and distortions.

Before collimating your telescope, take time to familiarize yourself with all its components. The primary mirror is the large mirror at the back end of the telescope tube. This mirror is adjusted by loosening and tightening the three screws, placed 120 degrees apart, at the end of the telescope tube. The secondary mirror (the small, elliptical mirror under the focuser, in the front of the tube) also has three adjustment screws. To determine if your telescope needs collimation first point your telescope toward a bright wall or blue sky outside.

Never look directly at the sun with the naked eye or with a telescope (unless you have the proper solar filter). Permanent and irreversible eye damage may result.

Aligning the Secondary Mirror

The following describes the procedure for daytime collimation of your telescope using the optional Newtonian Collimation Tool (#94183) offered by Celestron. To collimate the telescope without the Collimation Tool, read the following section on night time star collimation. For very precise collimation, the optional Collimation Eyepiece 1 ¼” (# 94182) is offered.

If you have an eyepiece in the focuser, remove it. Rack the focuser tube in completely, using the focusing knobs, until its silver tube is no longer visible. You will be looking through the focuser at a reflection of the secondary mirror, projected from the primary mirror. During this step, ignore the silhouetted reflection from the primary mirror. Insert the collimating cap into the focuser and look through it. With the focus pulled in all the way, you should be able to see the entire primary mirror reflected in the secondary mirror. If the primary mirror is not centered in the secondary mirror, adjust the secondary mirror screws by alternately tightening and loosening them until the periphery of the primary mirror is centered in your view. DO NOT loosen or tighten the center screw in the secondary mirror support, because it maintains proper mirror position.

Aligning the Primary Mirror

Now adjust the primary mirror screws to re-center the reflection of the small secondary mirror, so it’s silhouetted against the view of the primary. As you look into the focuser, silhouettes of the mirrors should look concentric. Repeat steps one and two until you have achieved this.

Remove the collimating cap and look into the focuser, where you should see the reflection of your eye in the secondary mirror.

44

Image 44
Contents Omni XLT Series Telescopes Table of Contents Astrophotography Page Omni XLT 102 Refractor Omni XLT 150 Newtonian Omni XLT 127 Schmidt-Cassegrain Setting up the Tripod Attaching the Equatorial Mount Installing the Counterweight Bar Attaching the Center Leg BraceInstalling the Counterweights Attaching the Slow Motion Control Knobs CablesAttaching the Telescope Tube to the Mount Installing the Finderscope Installing the Visual BackInstalling the Star Diagonal Installing the EyepiecesMoving the Telescope Manually Balancing the Mount in R.AAdjusting the Mount Balancing the Mount in DECAdjusting the Mount in Altitude Adjusting the Mount in AzimuthPage Page Focusing Image OrientationAligning the Finderscope Calculating MagnificationDetermining Field of View General Observing HintsCelestial Coordinate System Motion of the Stars Latitude Scale Pointing at PolarisFinding the North Celestial Pole Polar Alignment in the Southern Hemisphere Polar Alignment with the Latitude ScalePointing at Sigma Octantis Finding the South Celestial Pole SCPDeclination Drift Method of Polar Alignment Aligning the R.A. Setting Circle Using the R.A. Vernier Scale 11 Vernier ScaleObserving the Moon Lunar Observing HintsObserving the Planets Planetary Observing HintsObserving the Sun Solar Observing HintsObserving Deep Sky Objects Seeing ConditionsUsing the Lens Cap Aperture Stop with Refractor Telescopes SeeingPiggyback Photography Using Digital Cameras Eyepiece Projection for a Schmidt-Cassegrain FullLong Exposure Prime Focus Photography Planetary and Lunar Photography with Special Imagers CCD Imaging for Deep Sky Objects Terrestrial PhotographyMetering Reducing VibrationCare and Cleaning of the Optics Collimation of RefractorsCollimation of a Schmidt-Cassegrain Two 2 turnsCollimated telescope Should appear Symmetrical with Collimation of a Newtonian Aligning the Secondary MirrorBoth mirrors aligned with your eye looking into the focuser Night Time Star Collimating As a Series 1 # Page Page Appendix a Technical Specifications Appendix B Glossary of Terms Page Page Page Page Page Page Page Page Celestron Two Year Warranty