Celestron OMNI XLT 102 manual Polar Alignment in the Southern Hemisphere

Page 27
Figure 4-7

Big Dipper

Litle Dipper

Cassiopela

N.C.P. Polaris

(North Star)

Pointer Stars

Figure 4-6

The two stars in the front of the bowl of the Big Dipper point to Polaris which is less than one degree from the true (north) celestial pole. Cassiopeia, the “W” shaped constellation, is on the opposite side of the pole from the Big Dipper. The North Celestial Pole (N.C.P.) is marked by the “+” sign.

Polar Alignment in the Southern Hemisphere

Polar alignment to the South Celestial Pole (SCP) is a little more challenging due to the fact that there is no very bright star close to it like Polaris is in the NCP. There are various ways to polar align your telescope and for casual observing the methods below are adequate and will get you reasonably close to the SCP.

Polar Alignment with the Latitude Scale

The easiest way to polar align a telescope is with a latitude scale (Figure 4-7). Unlike other methods that require you to find the celestial pole by identifying certain stars near it, this method works off of a known constant to determine how high the polar axis should be pointed.

The constant, mentioned above, is a relationship between your latitude and the angular distance the celestial pole is above the southern horizon. The angular distance from the southern horizon to the south celestial pole is always equal to your latitude. To illustrate this, imagine that you are standing on the South Pole, latitude -90°. The south celestial pole (declination of -90°) would be directly overhead (i.e., 90° above the horizon). Now, let’s say that you move one degree north — your latitude is now -89° and the celestial pole is no longer directly

overhead. It has moved one degree closer toward the southern horizon. This means the pole is now 89° above the southern horizon. If you move one degree further north, the same thing happens again. You would have to travel 70 miles north or south to change your latitude by one degree. As you can see from this example, the distance from the southern horizon to the celestial pole is always equal to your latitude.

If you are observing from Sydney, which is at latitude -34°, then the celestial pole is 34° above the southern horizon. All a latitude scale does then is to point the polar axis of the telescope at the right elevation above the southern horizon. To align your telescope:

1.Make sure the polar axis of the mount is pointing due south. Use a landmark that you know faces south.

2.Level the tripod. Leveling the tripod is only necessary if using this method of polar alignment.

3.Adjust the mount in altitude until the latitude indicator points to your latitude. Moving the mount affects the angle the polar axis is pointing. For specific information on adjusting the equatorial mount, please see the section “Adjusting the Mount” in your telescope manual.

4.If the above is done correctly, you should be able to observe near the pole through the finderscope and a low power eyepiece.

This method can be done in daylight, thus eliminating the need to fumble around in the dark. Although this method does NOT put you directly on the pole, it will limit the number of corrections you will make when tracking an object.

27

Image 27
Contents Omni XLT Series Telescopes Table of Contents Astrophotography Page Omni XLT 102 Refractor Omni XLT 150 Newtonian Omni XLT 127 Schmidt-Cassegrain Setting up the Tripod Attaching the Equatorial Mount Attaching the Center Leg Brace Installing the Counterweight BarAttaching the Slow Motion Control Knobs Cables Installing the CounterweightsAttaching the Telescope Tube to the Mount Installing the Visual Back Installing the FinderscopeInstalling the Eyepieces Installing the Star DiagonalBalancing the Mount in R.A Moving the Telescope ManuallyBalancing the Mount in DEC Adjusting the MountAdjusting the Mount in Azimuth Adjusting the Mount in AltitudePage Page Image Orientation FocusingCalculating Magnification Aligning the FinderscopeGeneral Observing Hints Determining Field of ViewCelestial Coordinate System Motion of the Stars Pointing at Polaris Latitude ScaleFinding the North Celestial Pole Polar Alignment with the Latitude Scale Polar Alignment in the Southern HemisphereFinding the South Celestial Pole SCP Pointing at Sigma OctantisDeclination Drift Method of Polar Alignment Aligning the R.A. Setting Circle 11 Vernier Scale Using the R.A. Vernier ScalePlanetary Observing Hints Observing the MoonLunar Observing Hints Observing the PlanetsSeeing Conditions Observing the SunSolar Observing Hints Observing Deep Sky ObjectsSeeing Using the Lens Cap Aperture Stop with Refractor TelescopesPiggyback Photography Using Digital Cameras Full Eyepiece Projection for a Schmidt-CassegrainLong Exposure Prime Focus Photography Planetary and Lunar Photography with Special Imagers Reducing Vibration CCD Imaging for Deep Sky ObjectsTerrestrial Photography MeteringCollimation of Refractors Care and Cleaning of the OpticsTwo 2 turns Collimation of a Schmidt-CassegrainCollimated telescope Should appear Symmetrical with Aligning the Secondary Mirror Collimation of a NewtonianBoth mirrors aligned with your eye looking into the focuser Night Time Star Collimating As a Series 1 # Page Page Appendix a Technical Specifications Appendix B Glossary of Terms Page Page Page Page Page Page Page Page Celestron Two Year Warranty