Celestron OMNI XLT 102 manual Piggyback Photography

Page 35

After looking at the night sky for a while you may want to try photographing it. Several forms of photography are possible with your telescope, including terrestrial and celestial photography. Both of these are discussed in moderate detail with enough information to get you started. Topics include the accessories required and some simple techniques. More information is available in various books on the subject matter.

Below is described the traditional photographic methods with traditional equipment. During the last several years, digital cameras have become very popular and you can use this latest technology to take images through telescopes and it is relatively simple. In addition, CCD cameras (specifically made for astrophotography as well as Lunar and Planetary photography have become more economical for hobbyists to procure and have opened new avenues for taking fantastic images.

In addition to the specific accessories required for each type of celestial photography, there is the need for a camera - but not just any camera. The camera does not have to have many of the features offered on today's state-of-the-art equipment. For example, you don't need auto focus capability or mirror lock up. Here are the mandatory features a camera needs for celestial photography. First, a “B” setting which allows for time exposures and this excludes point and shoot cameras and limits the selection to SLR cameras, the most common type of 35mm camera on the market today.

Second, the “B” or manual setting should NOT run off the battery. Many new electronic cameras use the battery to keep the shutter open during time exposures. Once the batteries are drained, usually after a few minutes, the shutter closes, whether you were finished with the exposure or not. Look for a camera that has a manual shutter when operating in the time exposure mode. Canon, Olympus, Nikon, Pentax, etc. have made such camera bodies.

The camera must have interchangeable lenses so you can attach it to the telescope and use a variety of lenses for piggyback photography. If you can't find a new camera, you can purchase a used camera body that is not 100- percent functional. The light meter, for example, does not have to be operational since you will be determining the exposure length manually.

You also need a cable release with a locking function to hold the shutter open while you do other things. Mechanical and air release models are available.

Piggyback Photography

The easiest way to enter the realm of deep-sky, long exposure astrophotography is via the piggyback method. Piggyback photography is done with a camera and its normal lens riding on top of the telescope. Through piggyback photography you can capture entire constellations and record large scale nebulae that are too big for prime focus photography. Because you are photographing with a low power lens and guiding with a high power telescope, the margin for error is very large. Small mistakes made while guiding the telescope will not show up on film. To attach the camera to the refractor or Newtonian telescope, use the piggyback adapter screw located on the top of the tube mounting ring. For the Schmidt-Cassegrain telescope there is an optional Piggyback Camera Mount available. The cameras have a threaded hole at the bottom of the camera where the piggyback screw threads into.

As with any form of deep-sky photography, it should be done from a dark sky observing site. Light pollution around major urban areas washes out the faint light of deep-sky objects. You can still practice from less ideal skies.

1.Polar align the telescope (using one of the methods described earlier) and start the optional motor drive.

2.Load your camera with slide film, ISO 100 or faster, or print film, ISO 400 or faster! 2a. When using digital cameras, experiment with various settings and read the camera instructions as each is somewhat different than film SLR cameras.

3.Set the f/ratio of your camera lens so that it is a half stop to one full stop down from completely open.

35

Image 35
Contents Omni XLT Series Telescopes Table of Contents Astrophotography Page Omni XLT 102 Refractor Omni XLT 150 Newtonian Omni XLT 127 Schmidt-Cassegrain Setting up the Tripod Attaching the Equatorial Mount Attaching the Center Leg Brace Installing the Counterweight BarAttaching the Slow Motion Control Knobs Cables Installing the CounterweightsAttaching the Telescope Tube to the Mount Installing the Visual Back Installing the FinderscopeInstalling the Eyepieces Installing the Star DiagonalBalancing the Mount in R.A Moving the Telescope ManuallyBalancing the Mount in DEC Adjusting the MountAdjusting the Mount in Azimuth Adjusting the Mount in AltitudePage Page Image Orientation FocusingCalculating Magnification Aligning the FinderscopeGeneral Observing Hints Determining Field of ViewCelestial Coordinate System Motion of the Stars Pointing at Polaris Latitude ScaleFinding the North Celestial Pole Polar Alignment with the Latitude Scale Polar Alignment in the Southern HemisphereFinding the South Celestial Pole SCP Pointing at Sigma OctantisDeclination Drift Method of Polar Alignment Aligning the R.A. Setting Circle 11 Vernier Scale Using the R.A. Vernier ScalePlanetary Observing Hints Observing the MoonLunar Observing Hints Observing the PlanetsSeeing Conditions Observing the SunSolar Observing Hints Observing Deep Sky ObjectsSeeing Using the Lens Cap Aperture Stop with Refractor TelescopesPiggyback Photography Using Digital Cameras Full Eyepiece Projection for a Schmidt-CassegrainLong Exposure Prime Focus Photography Planetary and Lunar Photography with Special Imagers Reducing Vibration CCD Imaging for Deep Sky ObjectsTerrestrial Photography MeteringCollimation of Refractors Care and Cleaning of the OpticsTwo 2 turns Collimation of a Schmidt-CassegrainCollimated telescope Should appear Symmetrical with Aligning the Secondary Mirror Collimation of a NewtonianBoth mirrors aligned with your eye looking into the focuser Night Time Star Collimating As a Series 1 # Page Page Appendix a Technical Specifications Appendix B Glossary of Terms Page Page Page Page Page Page Page Page Celestron Two Year Warranty