Intel 80L188EB Byte Commands, Byte byteaddress = bytevalue, Byte byteaddress to byteaddress

Page 61

iECM-86 COMMANDS

5.4.2BYTE Commands

There are four forms for the BYTE commands:

BYTE byte_address

BYTE byte_address = byte_value

BYTE byte_address TO byte_address

BYTE byte_address TO byte_address = byte_value

All of these commands can be used whether or not the user’s program is running.

BYTE byte_address This form is used to examine and then possibly change one or more sequential BYTE variables. When this command is invoked, iECM- 86 displays the byte_address in hexadecimal notation and the value of the BYTE in the default base, then waits for an input from you.

You can respond with a carriage return character, an ESC character, or a numeric value. A carriage return terminates the command. An ESC results in the display of the next sequential BYTE variable. If a numeric value is entered, the BYTE variable is set to this value and the iECM-86 again waits for input. At this point, you can respond only with an ESC or carriage return. As before, the ESC displays the next sequential BYTE and the carriage return terminates the command.

BYTE byte_address = byte_value

This form is used to set an individual BYTE variable without first checking its current value. When invoked, this command sets the BYTE variable at byte_address to byte_value.

BYTE byte_address TO byte_address

This form is used to display a region of memory as a sequence of BYTE variables. When this command is invoked, iECM-86 starts by displaying the current default base and then a series of lines showing the contents of the selected memory region. The next line starts with a hexadecimal display of the address of the next BYTE variable to be displayed, followed by the display of up to 16 bytes of memory as BYTE variables in the default base. A new line start whenever 16 bytes of memory have been displayed on the line. The command terminates when all of the BYTE variables in the selected range have been displayed. During lengthy displays, you can stop the output to the console by pressing the space bar. You can resume the display by pressing the space bar a second time. You terminate the command by entering a carriage return.

5-11

5

Image 61
Contents Intel 186 EB/EC Evaluation Board User’s Manual Copyright Intel Corporation Contents Contents Chapter Introduction to the Software Irism Variables Rism CommandsRism Structure TrapisrFigures About This Manual Page Chapter About this Manual Content OverviewItalics Notation ConventionsDocument Name Intel Order # Related DocumentsElectronic Support Systems FaxBack ServiceWorld Wide Web Customer Support Telephone Numbers Technical SupportPage Getting Started Page Getting Started Intel 186 EC Evaluation Board Layout WHAT’S in Your KIT System RequirementsIntel 186 EB/EC Evaluation Board USER’S Manual ECM86 Page Hardware Overview Page LA19/WRT Prot Jumper SummaryPackaging MicroprocessorSram Memory ConfigurationF000FFFF LCD I/OPhysical Memory Map Flash Program Memory Jumper Assembly for Flash Downloading Programmable Logic Sram Static MemoryE1 Jumper Power SupplyInit Serial InterfaceCTS P2 Serial ChannelPin to 9-Pin Adaptor Expansion Interface EC Peripheral Expansion Connector JP2 40 pinEB Peripheral Expansion Connector JP2 24 pin CPU Bus Expansion EB and EC LCD Interface Demo LCD InterfacePage Introduction to Software Page Introduction to the Software Software FeaturesEmbedded Controller Monitor ECM RestrictionsUser Interface Diag COM2, -COM1Reset SYSTEM, RES SYSTEM, RESET, RES POLL, -SIGNAL6 DOS QuitReserved Functions Related InformationReserved Memory Reserved I/OIECM-86 Commands Page Entering Commands Loading and Saving Object Code File OperationsInclude filename Other File OperationsLOG filename List filenameProgram Control Resetting the TargetBreakpoints BR bpnumber = codeaddr BR bpnumberGO Forever Program ExecutionGO from codeaddr Till codeaddr or codeaddr GO from codeaddr Till codeaddrGO Till codeaddr or codeaddr Program SteppingStep Sstep Supported Data Types Displaying and Modifying Program VariablesByte byteaddress = bytevalue Byte CommandsByte byteaddress to byteaddress Byte byteaddress to byteaddress = bytevalue Word CommandsWord wordaddress = wordvalue Word wordaddress to wordaddressWord wordaddress to wordaddress = wordvalue Dword CommandsDword dwordaddress Dword dwordaddress = dwordvalueDword dwordaddress to dwordaddress = dwordvalue Stack CommandsStack stackaddress Stack stackaddress to stackaddressPort Commands String CommandsString byteaddress Port portaddress = bytevaluePort portaddress to portaddress = bytevalue Wport CommandsWport wportaddress Wport wportaddress to wportaddress Wport wportaddress = wordvalueWport wportaddress to wportaddress = wordvalue Processor VariablesPC =codeaddress IRISM-186 Commands Page Other Variables IRISM VariablesRism Structure Rism CommandsReceiving Data from the Host Sending Data to the HostTransmit Code 02H Setdataflag Code 00HReadbyte Code 04H Readword Code 05HLoadaddress Code 0AH Writedouble Code 09HReadpc Code 10H Writepc Code 11HReportstatus Code 14H TrapisrMonitorescape Code 15H Readbport Code 16HStep Code 1AH Writewport Code 19HReadreg Code 1BH Writereg Code 1CHStart Up Commands / or \ Page Parts List Page PIN Header JUMP4 PIN Header JUMP3PIN PWR Conn CN2PMLX PIN SIP SKT SIP14 ResetJP1 30 Header HDR2X30SOP44 XU9Intel SO20W20 Header HDR2X20 Intel # PA28F400BV PNP Transistor SOT23 SMT PNP MMBT2907ALT1Table A-2 EC Board Manual Parts List Sheet 3 Index Index-2

80L188EB, 80C188EC, 80C188EB, 80L186EB, 80C186EB specifications

The Intel 80L188EC, 80C186EC, 80L186EC, 80C186EB, and 80L186EB microprocessors represent a significant evolution in Intel's 16-bit architecture, serving various applications in embedded systems and computing during the late 1980s and early 1990s. These microprocessors are designed to offer a blend of performance, efficiency, and versatility, making them suitable for a range of environments, including industrial control, telecommunications, and personal computing.

The Intel 80L188EC is a member of the 186 family, notable for its low-power consumption and integrated support for a range of peripheral devices. It operates at clock speeds of up to 10 MHz and features a 16-bit architecture, providing a balance of processing power and energy efficiency. The 80C186EC, on the other hand, is a more advanced version, offering enhanced performance metrics with faster clock speeds and improved processing capabilities, making it ideal for applications that require more computational power.

The 80L186EC shares similarities with the 80L188EC but is enhanced further for various low-power applications, especially where battery life is crucial. With a maximum clock speed of 16 MHz, it excels in scenarios demanding energy-efficient processing without sacrificing performance.

In contrast, the 80C186EB and 80L186EB are optimized versions that bring additional features to the table. The 80C186EB operates at higher clock speeds, coupled with an extended instruction set, enabling it to handle more complex tasks and run sophisticated software. These enhancements allow it to serve well in environments that require reliable performance under load, such as data acquisition systems or advanced control systems.

The 80L186EB is tailored for specific low-power scenarios, integrating Intel's sophisticated low-power technologies without compromising on speed. Utilizing advanced process technologies, these chips benefit from reduced heat output and extended operating life, a significant advantage in embedded applications.

Overall, these microprocessors showcase Intel's commitment to innovation in 16-bit processing, marked by their varying capabilities and power profiles tailored to meet the demands of diverse applications, from industrial systems to consumer electronics. Their legacy continues to influence subsequent generations of microprocessor designs, emphasizing performance, energy efficiency, and versatile applications in computing technology. As such, the Intel 80C186 and 80L188 families play a crucial role in understanding the evolution of microprocessor technology.