Intel 80L188EB, 80L188EC, 80L186EB PNP Transistor SOT23 SMT PNP MMBT2907ALT1, Intel # PA28F400BV

Page 85

 

 

 

 

PARTS LIST

 

Table A-2. 80186 EC Board Manual Parts List (Sheet 2 of 3)

 

 

 

 

 

LOCATION

MANUFACTURER

DESCRIPTION

FOOTPRINT

COMMENTS

PART NUMBER

 

 

 

 

 

 

 

 

 

L1

 

 

3216CHIP

Not installed, but

 

 

 

 

place footprint

 

 

 

 

 

P1,P2

AMP # 748875-3

DB9

DB9FM1

9 pin, sub-D, R/A,

 

 

RECEPTACLE

 

female

 

 

 

 

 

Q1

Motorola #

PNP TRANSISTOR

SOT23

SMT PNP

 

MMBT2907ALT1

 

 

transistor,2907A

 

 

 

 

 

R1

Dale # CRCW1206

RES, 100k Ω

CR1206

SMT resistor, 100k

 

 

 

 

 

R4,R5,R6,

Dale # CRCW1206

RES, 10k Ω

CR1206

SMT resistor, 10k

 

 

 

 

 

R7,R8,R9,

 

 

 

 

 

 

 

 

 

R10

 

 

 

 

 

 

 

 

 

R11

Dale # CRCW1206

RES, 220k Ω

CR1206

SMT resistor, 220k

 

 

 

 

 

R13

Dale # TNPW-1206-

RES,16.9k,.1%

CR1206

SMT resistor,16.9k,

 

1692-B-T-2

 

 

.1% tolerance

 

 

 

 

 

R12

Dale # TNPW-1206-

RES,10k,.1%

CR1206

SMT resistor,16.9k,

 

1002-B-T-2

 

 

.1% tolerance

 

 

 

 

 

R3

Dale # CRCW1206

RES, 1.5k Ω

CR1206

SMT resistor, 1.5k

 

 

 

 

 

R2

Bourns 3006P,50k,

POT,50k

PT3006P

Thru-hole

 

potentiometer

 

 

potentiometer,50k

 

 

 

 

 

RP1

Bourns # 4610X-101

RPACK, 10K Ω

SIP10

Thru-hole,10 pin, 10k

 

 

 

 

RPACK

 

 

 

 

 

S1

ITT Cannon

Mom. switch

RESET

Thru-hole, 4 pin

 

# KSAOM211

 

 

(Include square blk

 

 

 

 

button #)

 

 

 

 

 

TP1 - TP8

Mill-Max # 3132-0-00-

Testpoint turret

EPOINT

 

 

15-00-00-08-0

 

 

 

 

 

 

 

 

U11

Maxim # MAX734CSA

12V Supply device

S08

Pending SMT

 

 

 

 

availability

 

 

 

 

 

XU7, XU13

Berg McKenzie

SMT 32 pin socket

SOJ32/400

SRAM Sockets

 

# SOJ32P-4.0

 

 

 

 

 

 

 

 

U7,U13

NEC # D431008LLE-

3.3V,1Mb,SRAM

 

To be installed

 

A17

 

 

(socketed)

 

 

 

 

 

U7,U13

NEC # D431008LE-17

5V,1Mb,SRAM

 

Bagged, to be included

 

 

 

 

in kit package

 

 

 

 

 

U7,U13

Hitachi #

3.3V,1Mb,SRAM

 

Possible secondary

 

HM62W8127HLJP-35

 

 

source for 3V & 5V

 

 

 

 

SRAM

 

 

 

 

 

XU9

Meritec

SMT 44 pin socket

SOP44

SMT 44 pin

 

# 980021-44-01

 

 

socket,w/o alignment

 

 

 

 

pins

 

 

 

 

 

U9

INTEL # PA28F400BV-

4Mb,boot blk,flash

 

Socketed

 

T60

 

 

 

 

 

 

 

 

U8,U12,U14

Motorola

74AC573

SO20W

SMT Octal latch

 

# MC74AC573DW

 

 

 

 

 

 

 

 

U6

Maxim # MAX750CSA

Step-down

SO8

Pending SMT

 

 

regulator

 

availability

 

 

 

 

 

A

A-5

Image 85
Contents Intel 186 EB/EC Evaluation Board User’s Manual Copyright Intel Corporation Contents Contents Chapter Introduction to the Software Irism Variables Rism CommandsRism Structure TrapisrFigures About This Manual Page Chapter About this Manual Content OverviewItalics Notation ConventionsDocument Name Intel Order # Related DocumentsElectronic Support Systems FaxBack ServiceWorld Wide Web Customer Support Telephone Numbers Technical SupportPage Getting Started Page Getting Started Intel 186 EC Evaluation Board Layout WHAT’S in Your KIT System RequirementsIntel 186 EB/EC Evaluation Board USER’S Manual ECM86 Page Hardware Overview Page LA19/WRT Prot Jumper SummaryPackaging MicroprocessorSram Memory ConfigurationF000FFFF LCD I/OPhysical Memory Map Flash Program Memory Jumper Assembly for Flash Downloading Programmable Logic Sram Static MemoryE1 Jumper Power SupplyInit Serial InterfaceCTS P2 Serial ChannelPin to 9-Pin Adaptor Expansion Interface EC Peripheral Expansion Connector JP2 40 pinEB Peripheral Expansion Connector JP2 24 pin CPU Bus Expansion EB and EC LCD Interface Demo LCD InterfacePage Introduction to Software Page Introduction to the Software Software FeaturesEmbedded Controller Monitor ECM RestrictionsUser Interface Diag COM2, -COM1Reset SYSTEM, RES SYSTEM, RESET, RES POLL, -SIGNAL6 DOS QuitReserved Functions Related InformationReserved Memory Reserved I/OIECM-86 Commands Page Entering Commands Loading and Saving Object Code File OperationsInclude filename Other File OperationsLOG filename List filenameProgram Control Resetting the TargetBreakpoints BR bpnumber = codeaddr BR bpnumberGO Forever Program ExecutionGO from codeaddr Till codeaddr or codeaddr GO from codeaddr Till codeaddrGO Till codeaddr or codeaddr Program SteppingStep Sstep Supported Data Types Displaying and Modifying Program VariablesByte byteaddress = bytevalue Byte CommandsByte byteaddress to byteaddress Byte byteaddress to byteaddress = bytevalue Word CommandsWord wordaddress = wordvalue Word wordaddress to wordaddressWord wordaddress to wordaddress = wordvalue Dword CommandsDword dwordaddress Dword dwordaddress = dwordvalueDword dwordaddress to dwordaddress = dwordvalue Stack CommandsStack stackaddress Stack stackaddress to stackaddressPort Commands String CommandsString byteaddress Port portaddress = bytevaluePort portaddress to portaddress = bytevalue Wport CommandsWport wportaddress Wport wportaddress to wportaddress Wport wportaddress = wordvalueWport wportaddress to wportaddress = wordvalue Processor VariablesPC =codeaddress IRISM-186 Commands Page Other Variables IRISM VariablesRism Structure Rism CommandsReceiving Data from the Host Sending Data to the HostTransmit Code 02H Setdataflag Code 00HReadbyte Code 04H Readword Code 05HLoadaddress Code 0AH Writedouble Code 09HReadpc Code 10H Writepc Code 11HReportstatus Code 14H TrapisrMonitorescape Code 15H Readbport Code 16HStep Code 1AH Writewport Code 19HReadreg Code 1BH Writereg Code 1CHStart Up Commands / or \ Page Parts List Page PIN Header JUMP4 PIN Header JUMP3PIN PWR Conn CN2PMLX PIN SIP SKT SIP14 ResetJP1 30 Header HDR2X30SOP44 XU9Intel SO20W20 Header HDR2X20 Intel # PA28F400BV PNP Transistor SOT23 SMT PNP MMBT2907ALT1Table A-2 EC Board Manual Parts List Sheet 3 Index Index-2

80L188EB, 80C188EC, 80C188EB, 80L186EB, 80C186EB specifications

The Intel 80L188EC, 80C186EC, 80L186EC, 80C186EB, and 80L186EB microprocessors represent a significant evolution in Intel's 16-bit architecture, serving various applications in embedded systems and computing during the late 1980s and early 1990s. These microprocessors are designed to offer a blend of performance, efficiency, and versatility, making them suitable for a range of environments, including industrial control, telecommunications, and personal computing.

The Intel 80L188EC is a member of the 186 family, notable for its low-power consumption and integrated support for a range of peripheral devices. It operates at clock speeds of up to 10 MHz and features a 16-bit architecture, providing a balance of processing power and energy efficiency. The 80C186EC, on the other hand, is a more advanced version, offering enhanced performance metrics with faster clock speeds and improved processing capabilities, making it ideal for applications that require more computational power.

The 80L186EC shares similarities with the 80L188EC but is enhanced further for various low-power applications, especially where battery life is crucial. With a maximum clock speed of 16 MHz, it excels in scenarios demanding energy-efficient processing without sacrificing performance.

In contrast, the 80C186EB and 80L186EB are optimized versions that bring additional features to the table. The 80C186EB operates at higher clock speeds, coupled with an extended instruction set, enabling it to handle more complex tasks and run sophisticated software. These enhancements allow it to serve well in environments that require reliable performance under load, such as data acquisition systems or advanced control systems.

The 80L186EB is tailored for specific low-power scenarios, integrating Intel's sophisticated low-power technologies without compromising on speed. Utilizing advanced process technologies, these chips benefit from reduced heat output and extended operating life, a significant advantage in embedded applications.

Overall, these microprocessors showcase Intel's commitment to innovation in 16-bit processing, marked by their varying capabilities and power profiles tailored to meet the demands of diverse applications, from industrial systems to consumer electronics. Their legacy continues to influence subsequent generations of microprocessor designs, emphasizing performance, energy efficiency, and versatile applications in computing technology. As such, the Intel 80C186 and 80L188 families play a crucial role in understanding the evolution of microprocessor technology.