Cisco Systems ONS 15454 manual DLP-A552 Adjust the Java Virtual Memory Heap Size, 22-56

Page 56

Chapter 22 DLPs A500 to A599

DLP- A552 Adjust the Java Virtual Memory Heap Size

Step 2 View the following TARP data cache information:

TID—The target identifier of the originating NE. For ONS 15454s, the TID is the name entered in the Node Name/TID field on the Provisioning > General tab.

NSAP/NET—The Network Service Access Point or Network Element Title of the originating NE.

Type—Indicates how the TARP data cache entry was created:

Dynamic—The entry was created through the TARP propagation process.

Static—The entry was manually created and is a static entry.

Step 3 If you want to query the network for an NSAP that matches a TID, complete the following steps. Otherwise, continue with Step 4.

Note The TID to NSAP function is not available if the TARP data cache is not enabled on the Provisioning > OSI > TARP subtab.

a.Click the TID to NSAP button.

b.In the TID to NSAP dialog box, enter the TID you want to map to an NSAP.

c.Click OK, then click OK on the information message.

d.On the TDC tab, click Refresh.

If TARP finds the TID in its TDC it returns the matching NSAP. If not, TARP sends PDUs across the network. Replies will return to the TDC later, and a check TDC later message is displayed.

Step 4 If you want to delete all the dynamically-generated TDC entries, click the Flush Dynamic Entries button. If not, continue with Step 5.

Step 5 Return to your originating procedure (NTP).

DLP-A552 Adjust the Java Virtual Memory Heap Size

Purpose

This task allows you to adjust the Java Virtual Memory (JVM) heap size

 

from the default 256 MB to the maximum of 512 MB in order to improve

 

CTC performance.

Tools/Equipment

None

Prerequisite procedures

None

Required/As needed

As needed

Onsite/Remote

Onsite or remote

Security Level

Provisioning or higher

Step 1 Click Start > Settings > Control Panel. The Windows Control Panel appears.

Step 2 Double-click System. The System Properties window appears.

Step 3 Click the Advanced tab.

Step 4 Click Environmental Variables. The Environmental Variables window appears.

Step 5 In the User Variables area, click New. The New User Variable window appears.

 

Cisco ONS 15454 Procedure Guide, R7.0

22-56

November 2007

Image 56
Contents DLP-A507 View OC-N PM Parameters 22-122-2 Card ViewDLP-A509 Provision CE-1000-4 Ethernet Ports Click the Provisioning Ether Ports tabsClick the Performance Ether Ports Statistics tabs 22-3DLP-A510 Provision a DS-3 Circuit Source and Destination 22-4DLP-A512 Change Node Access and PM Clearing Privilege 22-5DLP-A513 Provision CE-100T-8 Ethernet Ports 22-622-7 22-8 DLP-A514 Provision CE-100T-8 and CE-1000-4 POS PortsClick the Performance POS Ports Statistics tabs 22-9 DLP-A517 View Alarm or Event HistoryClick the History Shelf tabs 22-10 DLP-A518 Create a New or Cloned Alarm Severity ProfileAlarm Profile Editor tabs Figure Node View Alarm Profile Editor 22-1122-12 22-13 Store Profiles Dialog Box22-14 DLP-A519 Apply Alarm Profiles to PortsClick the Provisioning Alarm Profiles Alarm Behavior tabs DLP-A520 Delete Alarm Severity Profiles 22-1522-16 Select Node/Profile Combination For Delete Dialog BoxAlarm Filter Dialog Box General Tab 22-17Alarm Filter Dialog Box Conditions Tab 22-18DLP-A522 Suppress Alarm Reporting 22-19DLP-A523 Discontinue Alarm Suppression 22-20DLP-A524 Download an Alarm Severity Profile 22-2122-22 Click OKOr Sonet Thresholds subtab Parameter Description Options 22-23IS-NR 22-2422-25 DLP-A527 Change the OC-N Card ALS Maintenance Settings 22-26Cisco ONS 15454 Reference Manual 22-2722-28 DLP-A528 Change the Default Network View Background MapDLP-A529 Delete Ethernet Rmon Alarm Thresholds DLP-A530 Install the Tie-Down Bar 22-29DLP-A531 Print CTC Data 22-3022-31 Selecting CTC Data For PrintDLP-A532 Export CTC Data 22-3222-33 DLP-A533 Create Ethernet Rmon Alarm Thresholds 22-34Variable Definition 22-3522-36 22-37 22-38 22-39 DLP-A534 Provision OSI Routing Mode 22-4022-41 Node view, click the Provisioning OSI Tarp Config tabsDLP-A535 Provision or Modify Tarp Operating Parameters 22-42 22-43 Node view, click the Provisioning OSI Tarp Static TDC tabsClick Add Static Entry 22-44 DLP-A538 Add a Tarp Manual Adjacency Table EntryClick Delete Static Entry DLP-A539 Provision OSI Routers 22-4522-46 DLP-A541 Enable the OSI Subnet on the LAN InterfaceDLP-A540 Provision Additional Manual Area Addresses 22-47 DLP-A542 Create an IP-Over-CLNS Tunnel 22-4822-49 DLP-A544 Change the OSI Routing ModeDLP-A543 Remove a Tarp Manual Adjacency Table Entry 22-50 DLP-A545 Edit the OSI Router Configuration DLP-A546 Edit the OSI Subnetwork Point of AttachmentNode view, click the Provisioning OSI Routers Subnet tabs 22-51DLP-A547 Edit an IP-Over-CLNS Tunnel 22-52DLP-A548 Delete an IP-Over-CLNS Tunnel 22-53DLP-A549 View IS-IS Routing Information Base 22-54Node view, click the Maintenance OSI ES-IS RIB tabs DLP-A550 View ES-IS Routing Information BaseDLP-A551 Manage the Tarp Data Cache 22-55DLP-A552 Adjust the Java Virtual Memory Heap Size 22-5622-57 22-58 22-59 22-60 22-61 22-62 22-63 Click the Maintenance Protection tabs 22-6422-65 22-66
Related manuals
Manual 54 pages 43.54 Kb

ONS 15454 specifications

Cisco Systems ONS 15454 is a versatile optical networking platform designed to enable service providers and enterprises to deploy and manage robust optical networks efficiently. The ONS 15454 serves as a cornerstone in the evolution of transport networks, featuring various technologies that meet the increasing demand for bandwidth and service quality.

One of the standout features of the ONS 15454 is its support for multiple service types, including TDM, Ethernet, and Wavelength Division Multiplexing (WDM). This capability allows service providers to maximize network resources while delivering a wide range of services, from traditional voice to high-speed data and video.

The ONS 15454 leverages Dense Wavelength Division Multiplexing (DWDM) technology, enabling the transmission of multiple data streams over a single optical fiber. This effectively expands the network's capacity without the need for additional infrastructure, a crucial benefit in today's ever-growing data landscape. The system supports a variety of transponder modules, allowing for flexible scaling and seamless upgrades as bandwidth requirements increase.

Scalability is another key characteristic of the ONS 15454. With its modular architecture, it accommodates a range of interfaces and line cards, making it easier to tailor deployments to specific customer needs. This modularity not only facilitates upgrades but also simplifies maintenance, minimizing downtime and operational costs.

The platform also features advanced management capabilities through Cisco's Optical Network Management system. This allows for real-time monitoring, provisioning, and troubleshooting, ensuring network reliability and performance. The intuitive interface and comprehensive reporting tools enable operators to gain insights into network operations, improving decision-making processes.

Furthermore, the ONS 15454 is built to support optical layer protection features, enhancing network resilience. Technologies such as Automatic Protection Switching (APS) and Optical Supervisory Channel (OSC) ensure that connectivity is maintained even in the event of a failure, crucial for mission-critical applications.

In conclusion, the Cisco ONS 15454 is a powerful optical networking solution that combines flexibility, scalability, and advanced management features. Its support for various services and technologies positions it as an essential asset for organizations looking to build a future-proof network capable of handling increasing data traffic while maintaining high service standards.