Cisco Systems ONS 15454 manual DLP-A542 Create an IP-Over-CLNS Tunnel, 22-48

Page 48

Chapter 22 DLPs A500 to A599

DLP- A542 Create an IP-Over-CLNS Tunnel

DLP-A542 Create an IP-Over-CLNS Tunnel

Purpose

This task creates an IP-over-CLNS tunnel to allow ONS 15454s to

 

communicate across equipment and networks that use the OSI protocol

 

stack.

Tools/Equipment

None

Prerequisite Procedures

DLP-A60 Log into CTC, page 17-69

Required/As Needed

As needed

Onsite/Remote

Onsite or remote

Security Level

Provisioning or higher

Caution IP-over-CLNS tunnels require two end points. You will create one point on an ONS 15454. The other end point is generally provisioned on non-ONS equipment including routers and other network elements (NE). Before you begin, verify that you have the capability to create an OSI over IP tunnel on the other equipment location.

Step 1 In node view, click the Provisioning > OSI > Tunnels tabs.

Step 2 Click Create.

Step 3 In the Create IP Over OSI Tunnel dialog box, complete the following fields:

Tunnel Type—Choose a tunnel type:

Cisco—Creates the proprietary Cisco IP tunnel. Cisco IP tunnels add the CLNS header to the IP packets.

GRE—Creates a Generic Routing Encapsulation tunnel. GRE tunnels add the CLNS header and a GRE header to the IP packets.

The Cisco proprietary tunnel is slightly more efficient than the GRE tunnel because it does not add the GRE header to each IP packet. The two tunnel types are not compatible. Most Cisco routers support the Cisco IP tunnel, while only a few support both GRE and Cisco IP tunnels. You generally should create Cisco IP tunnels if you are tunneling between two Cisco routers or between a Cisco router and an ONS node.

Caution Always verify that the IP-over-CLNS tunnel type you choose is supported by the equipment at the other end of the tunnel.

IP Address—Enter the IP address of the IP-over-CLNS tunnel destination.

IP Mask—Enter the IP address subnet mask of the IP-over-CLNS destination.

OSPF Metric—Enter the Open Shortest Path First (OSPF) metric for sending packets across the IP-over-CLNS tunnel. The OSPF metric, or cost, is used by OSPF routers to calculate the shortest path. The default is 110. Normally, it is not be changed unless you are creating multiple tunnel routes and want to prioritize routing by assigning different metrics.

NSAP Address—Enter the destination NE or OSI router NSAP address.

Step 4 Click OK.

 

Cisco ONS 15454 Procedure Guide, R7.0

22-48

November 2007

Image 48
Contents DLP-A507 View OC-N PM Parameters 22-122-2 Card ViewDLP-A509 Provision CE-1000-4 Ethernet Ports Click the Provisioning Ether Ports tabsClick the Performance Ether Ports Statistics tabs 22-3DLP-A510 Provision a DS-3 Circuit Source and Destination 22-4DLP-A512 Change Node Access and PM Clearing Privilege 22-5DLP-A513 Provision CE-100T-8 Ethernet Ports 22-622-7 DLP-A514 Provision CE-100T-8 and CE-1000-4 POS Ports Click the Performance POS Ports Statistics tabs22-8 DLP-A517 View Alarm or Event History Click the History Shelf tabs22-9 DLP-A518 Create a New or Cloned Alarm Severity Profile Alarm Profile Editor tabs Figure22-10 Node View Alarm Profile Editor 22-1122-12 22-13 Store Profiles Dialog BoxDLP-A519 Apply Alarm Profiles to Ports Click the Provisioning Alarm Profiles Alarm Behavior tabs22-14 DLP-A520 Delete Alarm Severity Profiles 22-1522-16 Select Node/Profile Combination For Delete Dialog BoxAlarm Filter Dialog Box General Tab 22-17Alarm Filter Dialog Box Conditions Tab 22-18DLP-A522 Suppress Alarm Reporting 22-19DLP-A523 Discontinue Alarm Suppression 22-20DLP-A524 Download an Alarm Severity Profile 22-21Click OK Or Sonet Thresholds subtab22-22 Parameter Description Options 22-23IS-NR 22-2422-25 DLP-A527 Change the OC-N Card ALS Maintenance Settings 22-26Cisco ONS 15454 Reference Manual 22-27DLP-A528 Change the Default Network View Background Map DLP-A529 Delete Ethernet Rmon Alarm Thresholds22-28 DLP-A530 Install the Tie-Down Bar 22-29DLP-A531 Print CTC Data 22-3022-31 Selecting CTC Data For PrintDLP-A532 Export CTC Data 22-3222-33 DLP-A533 Create Ethernet Rmon Alarm Thresholds 22-34Variable Definition 22-3522-36 22-37 22-38 22-39 DLP-A534 Provision OSI Routing Mode 22-40Node view, click the Provisioning OSI Tarp Config tabs DLP-A535 Provision or Modify Tarp Operating Parameters22-41 22-42 Node view, click the Provisioning OSI Tarp Static TDC tabs Click Add Static Entry22-43 DLP-A538 Add a Tarp Manual Adjacency Table Entry Click Delete Static Entry22-44 DLP-A539 Provision OSI Routers 22-45DLP-A541 Enable the OSI Subnet on the LAN Interface DLP-A540 Provision Additional Manual Area Addresses22-46 22-47 DLP-A542 Create an IP-Over-CLNS Tunnel 22-48DLP-A544 Change the OSI Routing Mode DLP-A543 Remove a Tarp Manual Adjacency Table Entry22-49 22-50 DLP-A545 Edit the OSI Router Configuration DLP-A546 Edit the OSI Subnetwork Point of AttachmentNode view, click the Provisioning OSI Routers Subnet tabs 22-51DLP-A547 Edit an IP-Over-CLNS Tunnel 22-52DLP-A548 Delete an IP-Over-CLNS Tunnel 22-53DLP-A549 View IS-IS Routing Information Base 22-54Node view, click the Maintenance OSI ES-IS RIB tabs DLP-A550 View ES-IS Routing Information BaseDLP-A551 Manage the Tarp Data Cache 22-55DLP-A552 Adjust the Java Virtual Memory Heap Size 22-5622-57 22-58 22-59 22-60 22-61 22-62 22-63 Click the Maintenance Protection tabs 22-6422-65 22-66
Related manuals
Manual 54 pages 43.54 Kb

ONS 15454 specifications

Cisco Systems ONS 15454 is a versatile optical networking platform designed to enable service providers and enterprises to deploy and manage robust optical networks efficiently. The ONS 15454 serves as a cornerstone in the evolution of transport networks, featuring various technologies that meet the increasing demand for bandwidth and service quality.

One of the standout features of the ONS 15454 is its support for multiple service types, including TDM, Ethernet, and Wavelength Division Multiplexing (WDM). This capability allows service providers to maximize network resources while delivering a wide range of services, from traditional voice to high-speed data and video.

The ONS 15454 leverages Dense Wavelength Division Multiplexing (DWDM) technology, enabling the transmission of multiple data streams over a single optical fiber. This effectively expands the network's capacity without the need for additional infrastructure, a crucial benefit in today's ever-growing data landscape. The system supports a variety of transponder modules, allowing for flexible scaling and seamless upgrades as bandwidth requirements increase.

Scalability is another key characteristic of the ONS 15454. With its modular architecture, it accommodates a range of interfaces and line cards, making it easier to tailor deployments to specific customer needs. This modularity not only facilitates upgrades but also simplifies maintenance, minimizing downtime and operational costs.

The platform also features advanced management capabilities through Cisco's Optical Network Management system. This allows for real-time monitoring, provisioning, and troubleshooting, ensuring network reliability and performance. The intuitive interface and comprehensive reporting tools enable operators to gain insights into network operations, improving decision-making processes.

Furthermore, the ONS 15454 is built to support optical layer protection features, enhancing network resilience. Technologies such as Automatic Protection Switching (APS) and Optical Supervisory Channel (OSC) ensure that connectivity is maintained even in the event of a failure, crucial for mission-critical applications.

In conclusion, the Cisco ONS 15454 is a powerful optical networking solution that combines flexibility, scalability, and advanced management features. Its support for various services and technologies positions it as an essential asset for organizations looking to build a future-proof network capable of handling increasing data traffic while maintaining high service standards.