Sharp EL9900 manual Using this Handbook, Introduction

Page 4

Using this Handbook

This handbook was produced for practical application of the SHARP EL-9900 Graphing Calculator based on exercise examples received from teachers actively engaged in teaching. It can be used with minimal preparation in a variety of situations such as classroom presentations, and also as a self-study reference book.

Introduction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL-9900 Graphing Calculator

 

 

 

Slope and Intercept of Quadratic Equations

 

Explains the process of each

Explanation of the section

 

 

 

 

step in the key operations

 

 

A quadratic equation of y in terms of x can be expressed by the standard form y = a (x -h)2+

 

 

 

k, where a is the coefficient of the second degree term ( y = ax2 + bx + c) and ( h, k) is the

 

 

 

 

 

 

 

vertex of the parabola formed by the quadratic equation. An equation where the largest

 

 

 

 

 

 

 

exponent on the independent variable x is 2 is considered a quadratic equation. In graphing

 

 

 

 

 

 

 

quadratic equations on the calculator, let the x- variable be represented by the horizontal

 

 

 

 

 

Example

 

axis and let y be represented by the vertical axis. The graph can be adjusted by varying the

 

 

 

 

 

 

Example

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coefficients a, h, and k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example of a problem to be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL-9900 Graphing Calculator

 

 

 

Graph various quadratic equations and check

the relation between the graphs and

 

 

 

 

 

the values of coefficients of the equations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solved in the section

 

1. Graph y = x 2

and y = (x-2)2.

 

 

 

Step & Key Operation

 

 

 

 

Display

 

Notes

 

 

 

 

*Use either pen touch or cursor to operate.

 

 

 

 

 

 

 

 

 

 

Graph y = x

and y = x +2.

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

2

 

2

 

2-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Graph y = x 2

and y = 2x 2.

Change the equation in Y2 to y = x +2.

 

 

 

 

 

 

 

 

4. Graph y = x 2

and y = -2x 2.

 

 

 

Y=

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

*

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENTER

2

ENTER

 

 

 

 

 

 

 

 

 

 

 

Before

 

 

There may be differences in the results of calculations and graph plotting depending on the setting.

 

 

 

 

 

 

 

Before Starting

 

Starting

 

 

Return all settings to the default value and delete2all-2dataView.

both graphs.

 

 

 

 

 

Notice that the addition of 2 moves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

basic graph down two units on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the basic y =x2 graph up two units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

and the addition of -2 moves the

Important notes to read

 

 

Step & Key Operation

 

Display

 

 

 

 

 

Notes

 

 

 

 

 

the y-axis. This demonstrates the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ k will move the basic graph up k units and placing k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fact that adding k (>0) within the standard form y = a (x -

before operating the calculator

 

1-1Enter the equation y = x2 for Y1.

 

 

 

 

 

 

 

 

 

(<0)k will move the basic graph down k units on the y-axis.

 

 

 

 

 

 

 

 

 

 

 

 

Y=

 

X/θ /T/n

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equation in Y2 to y = 2x2.

 

 

 

 

 

 

1-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1Change

 

 

 

 

 

 

Enter the equation y = (x-2) 2

for

 

Y=

 

 

 

 

 

2

ENTER

 

 

 

 

 

 

 

 

 

*

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

Y2 using Sub feature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 ENTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step & Key Operation

 

 

 

 

 

 

 

 

( X/θ /T/n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALPHA

 

A

 

3-2

 

 

 

 

 

 

 

 

 

 

 

 

2 pinches2

or closes the basic

 

 

 

 

 

 

 

 

x2

+

 

 

 

 

View both graphs.

 

 

 

 

 

Notice that the multiplication of

 

 

 

ALPHA

 

H

)

ALPHA

 

K

 

 

 

 

 

 

A clear step-by-step guide

 

 

 

 

 

 

 

1 ENTER

2 ENTER

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

y=x graph. This demonstrates

 

 

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 0

ENTER

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x - h)2 + k will pinch or close

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the fact that multiplying an a

to solving the problems

1-3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(> 1) in the standard form y = a

 

View both graphs.

 

 

 

 

 

 

 

 

 

within the quadratic operation

 

the basic graph.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the addition of -2

 

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

4-1

 

 

moves the basic

y =x2 graph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change rightthe equationtwo unitsin(addingY2 to 2 moves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = -2x2.it left two units) on the x-axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shows that placing an h (>0) within the standard

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

form y = a (x - hY=)2 + k will

move2nd F

 

theSUB

basic(-)graph2 right

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h units and placing an h (<0)* will move it left h units

 

 

 

 

 

Display

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the x-axis. ENTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-2

GRAPH

 

 

 

 

 

 

 

4-1

 

y =x2 graph and flips it (reflects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

View both graphs.

 

 

 

 

 

Notice that the multiplication of

Illustrations of the calculator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2 pinches or closes the basic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing an a (<-1) in the standard form y = a (x - h) 2 + k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it) across the x-axis. This dem-

screen for each step

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

onstrates the fact that multiply-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

will pinch or

close the basic graph and flip it (reflect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it) across the x-axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The EL-9900 allows various quadratic equations to be graphed easily.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also the characteristics of quadratic equations can be visually shown through

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the relationship between the changes of coefficient values and their graphs,

 

Merits of Using the EL-9900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using the Substitution feature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlights the main functions of the calculator relevant to the section

We would like to express our deepest gratitude to all the teachers whose cooperation we received in editing this book. We aim to produce a handbook which is more replete and useful to everyone, so any comments or ideas on exercises will be welcomed.

(Use the attached blank sheet to create and contribute your own mathematical problems.)

Image 4
Contents EL-9900 Contents Read this first Always read Before StartingUsing this Handbook IntroductionFractions and Decimals ExamplePie Charts and Proportions BeforeSlope and Intercept of Linear Equations 1Enter the equation y = x for Y2 Parallel and Perpendicular Lines 2View the graphs Slope and Intercept of Quadratic Equations 1Change the equation in Y2 to y = x 2+2 1Access the Solver feature This screen will appear a few 4Enter the values L=15,000, I=0.09, N=48 Access the Solver feature 10π 200 15 π1Access the Solver feature 5Solve for the height and enter a starting point Graphing Polynomials and Tracing to Find the Roots 1Move the tracer near the left-hand root Graphing Polynomials and Jumping to Find the Roots = x 4 + x 3 5x 2 3x +Find the next root Solving a System of Equations by Graphing or Tool Feature 1Access the Tool menu. Select the number of variables Entering and Multiplying Matrices 1Multiply the matrices a and B together at the home screen Solving a System of Linear Equations Using Matrices 2Calculate B-1C Solving Inequalities EL-9900 Graphing Calculator 2x 5 ≥ Solving Double Inequalities= 2x 5 = 2x 5 and y = 7 intersect at 6,7 2x + y ≥ + y ≤+ y ≤ + 2y ≤ 1 x 2 + y ≥ + 2y ≤ 1 y ≤ +y ≥ 4 y ≥ 4 xContinuing key operations omitted Slope and Intercept of Absolute Value Functions If x ≥3View the graph Solving Absolute Value Equations Solve an absolute value equation 5 4x =Solving Absolute Value Inequalities = 10, y =2nd F Calc 2 x = = 9.999999999 Note Evaluating Absolute Value Functions +3 1+3Math Graphing Rational Functions + 1x Solving Rational Function Inequalities Graphing Parabolas = y 2 + 2 = y = +√ x +Change to parametric mode Graphing Circles Graph x 2 2x + y 2 + 4y =2x + y 2 + 4y = 2x + y+22 =For Y1 = Y1 2 for Y2, and y = -Y1 -2 for Graphing Ellipses View the graph Graphing Hyperbolas Zoom out the screen Key pad for the Sharp EL-9900 Calculator Key pad for the Sharp EL-9900 Calculator Sharp Graphing Calculator Step Sharp Corporation OSAKA, Japan