Tyco 1540 manual Input Registers

Page 59

The data format in RTU mode is:

Coding System:

8-bit per byte

Data Format:

4 bytes (2 registers) per parameter.

 

Floating point format ( to IEEE 754)

 

Most significant register first (Default). The default may be changed if

 

required - See Holding Register "Register Order" parameter.

Error Check Field:

2 byte Cyclical Redundancy Check (CRC)

Framing:

1 start bit

 

8 data bits, least significant bit sent first

 

1 bit for even/odd parity or no parity

 

1 stop bit if parity is used; 1 or 2 bits if no parity

Data Transmission speed is selectable between 2400, 4800, 9600 and 19200 baud.

Input Registers

Input registers are used to indicate the present values of the measured and calculated electrical quantities.

Each parameter is held in two consecutive 16 bit registers. The following table details the 3X register address, and the values of the address bytes within the message. A tick (÷) in the column indicates that the parameter is valid for the particular wiring system. Any parameter with a cross (X) will return the value Zero (0000h). Some parameters are only available on the Integra 1540, as shown in the table below..

Each parameter is held in the 3X registers. Modbus Function Code 04 is used to access all parameters.

e.g. to request

Volts 1

Start address

= 00

 

No of registers

= 02

 

Volts 2

Start address

= 02

 

No of registers

= 02

Each request for data must be restricted to 40 parameters or less. Exceeding the 40 parameter limit will cause a Modbus exception code to be returned.

Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03

57

Image 59
Contents Energy Division Crompton Switchboard Integra Contents Setting up Specification Basis of measurement and calculations Serial Communications Maintenance Appendix a CE Declaration of ConformityTHD Introduction3 0440 Unit CharacteristicsIntegra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Default display Demand Calculation Maximum PowerSecondary Voltage Analogue Output Option RS485 Serial OptionPulse Output Option Start Up Screens Display ScreensLayout System Screen Line to Neutral Voltage %THD System %THD ScreenLine to Neutral Voltages Line Currents Line to Line VoltagesLine to Line Voltages %THD Line Currents %THD Neutral Current, Frequency and Power FactorPower Reactive Energy kVArh Active Energy kWhOver Range DemandMaximum Demand KWh and kVArh Display Range Setting upError Messages Number Entry Procedure Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Access with Password Protection AccessAccess with No Password Protection Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Changing the Password Potential Transformer Primary Voltage Full Scale CurrentIntegra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Potential Transformer Secondary Value Demand Integration Time Resets Pulsed Output, Pulse Duration Pulse Rate 12 RS485 Baud Rate 13 RS485 Parity Selection 14 RS485 Modbus Address Reduced output range Analogue Output Set UpSecond Channel Reverse OperationReading Bottom A1rb or A2rb Analogue Output Scaling ExampleReading A1r or A2r Reading Top A1rt or A2rtSummary Power FactorOutput Bottom A1ob or A2ob USA Reading European Convention North American Convention Output Phase Angle L1-L2 Calculated Reading Parameter Selection A1r or A2r Parameter Number WireReading Top A1rt or A2rt Reading Bottom A1rb or A2rb Display Only Versions SpecificationDisplay/Transducer Combined 0240, 0340, 0440 121 240V L-L 70.1 139V L-N Reference conditions of influence quantities Measuring RangesAccuracy Display/Tranducer Combined 1000 Auxiliary Power Supply Reference conditions Standards Nominal range of use of influence quantities for measurandsFunctional ranges ScreenModbus RS485 Serial Communications OptionIntegra 1540 Only Active Energy Pulsed Output OptionBasis of measurement and calculations Reactive and Apparent PowerEnergy resolution Total Harmonic Distortion 1540 only Modbus Implementation Serial CommunicationsRS485 Port Modbus or JC N2 Input Registers Parameter Modbus Start High Low Byte Modbus Holding Registers and Integra set upMetasys release requirements RS485 Implementation of Johnson Controls MetasysApplication details Design considerations Support for Metasys IntegrationSupport for Crompton Integra operation Integra 1560/1580 Point Mapping table Metasys N2 applicationMaintenance Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03 Integra 1540, 1000, 0640, 0440, 0340, 0240 Issue 1 04/03

1540 specifications

The Tyco 1540 is an innovative and versatile telecommunications solution that has gained popularity in various industries due to its robust features and state-of-the-art technology. Designed primarily for high-performance communication, the Tyco 1540 has become a go-to choice for service providers, enterprises, and data centers looking to enhance their network capabilities.

One of the main features of the Tyco 1540 is its advanced multiplexing technology. This allows for the efficient transmission of multiple data signals over a single optical fiber, maximizing bandwidth utilization and reducing infrastructure costs. The device supports a range of protocols, making it adaptable to various network environments and requirements.

The Tyco 1540 also incorporates automation capabilities, which significantly streamline network management and operational processes. With built-in monitoring and diagnostic tools, administrators can easily track performance metrics, troubleshoot issues, and optimize network resources in real-time, thus ensuring seamless communication and minimal downtime.

Another standout characteristic of the Tyco 1540 is its scalability. As businesses grow and their communication needs evolve, the Tyco 1540 can be adjusted to accommodate increased data traffic without needing extensive hardware upgrades. This scalability is essential for organizations that need to remain agile and responsive in an ever-changing technological landscape.

Security is a critical concern in telecommunications, and the Tyco 1540 addresses this with robust encryption protocols. This functionality safeguards sensitive data transmitted across the network, providing peace of mind for organizations handling confidential information. Moreover, the device is designed to comply with industry standards and regulations, ensuring that users meet necessary compliance requirements.

Energy efficiency is another notable aspect of the Tyco 1540. The device is engineered to consume less power, reducing operational costs and minimizing the environmental impact. The incorporation of energy-saving technologies reflects a commitment to sustainable practices, which is increasingly important in today's eco-conscious world.

In conclusion, the Tyco 1540 represents a significant advancement in telecommunications technology. Its features, including advanced multiplexing, automation capabilities, scalability, enhanced security, and energy efficiency, make it an ideal choice for a wide range of applications. Organizations looking to improve their communication infrastructure can certainly benefit from integrating the Tyco 1540 into their systems. With its robust performance and adaptability, the Tyco 1540 stands out as a leading solution in the evolving telecommunications landscape.