Liebert ITR Water Regulating Valve Adjustment, Water Regulating Valve Manual Flushing

Page 32

Water-Cooled Models

4.3Water Regulating Valve

The water regulating valve automatically regulates the amount of fluid necessary to remove the heat from the refrigeration system, permitting more fluid to flow when load conditions are high and less fluid to flow when load conditions are low. The valve consists of a brass body, balance spring, valve seat, valve disc holders, capillary tube to discharge pressure, and adjusting screw.

4.3.1Water Regulating Valve Adjustment

The Liebert Challenger ITR may be equipped with either a standard Johnson Controls valve, 150 psig (1034 kPa) or with a high-pressure Johnson Controls valve, 350 psig (2413 kPa).

The valve may be adjusted with a standard refrigeration service valve wrench or screw driver.

To lower the head pressure setting, turn the square adjusting screw clockwise until the high pressure gauge indicates the desired setting.

To raise the head pressure setting, turn the adjusting screw counterclockwise until the desired set- ting is obtained.

Figure 13 Johnson Controls valve adjustment

Range spring

Valve spring guide

Range adjustment screw

Top retainer

Insert screwdrivers underneath the valve spring guide

4.3.2Water Regulating Valve Manual Flushing

The valve may be flushed by inserting screwdrivers or similar tools under the opposing sides of the main spring and lifting. This action will open the valve seat and flush any dirt particles from the seat. If this fails, the valve must be disassembled for cleaning the seat.

4.3.3Testing Valve Function

When the refrigeration system has been off for 10-15 minutes, the water flow should stop.

Should the water continue to flow, the valve is either improperly adjusted or the pressure sensing capillary is not properly connected to the condenser.

26

Image 32
Contents Liebert Challenger ITR Page Table of Contents R407C Refrigerant Chilled Water ModelsSplit System Models Figures Tables System Descriptions Remote Sensor Installation Location Room PreparationEquipment Inspection Location ConsiderationsUnit shipping weights Handling With SkidRemoval of Skid Domestic Export Model Lb kg 50Hz Models 60Hz ModelsCabinet dimensions Unit WeightSL-11897 Piping connection size Piping ConsiderationsDrain Line Piping Outlet Locations Piping connections for split system fan coil units Piping connections for water/glycol and Glycool units Piping connections for chilled water self-contained units Electrical Connections Electrical connectionsDucted Applications Plenum InstallationBalancing the Air Distribution Checklist for Completed Installation Condenser Location Line VoltageLow Voltage Lee-Temp/Flood Back Head Pressure Control CondensersAir-cooled condenser statistics Refrigerant Piping Recommended line sizes OD copper inches23 & 33 kW 067A 065A Equivalent Length Hot Gas Line Liquid LineFan Speed Control Systems Materials SuppliedEquivalent lengths feet for various pipe fittings Condenser refrigerant per serial tagDehydration/Leak Test Single Circuit Shown Refrigerant control settings psi kPa Lee-Temp/Flood Back Head Pressure Control SystemsCharging PipingMaterials Supplied Low Pressure Cut Out High Pressure Cut Out 360 Single Circuit Shown Condenser Water-cooled general arrangement Water Regulating Valve Adjustment Testing Valve FunctionWater Regulating Valve Water Regulating Valve Manual FlushingPump and Drycooler Drycooler InstallationDrycooler Location Room dew point temperatures Glycol PipingExpansion Tanks, Fluid Relief Valves and Other Devices Dry Bulb Wet Bulb Relative Dew Point HumidityIndoor unit glycol volume approximate gallons liters max Volume in standard Type L copper pipingFilling Instructions Preparing the System for Filling@ 50F 10C Glycol SolutionsEthylene glycol concentrations Filling the System For expansion tank dimensions, see on 43-9/16 110 5mmSee Note 30-1/4 483mm 43-3/16 1097mmMounting hole dimensional data Drycooler dataGlycol pump data Pump Pump Suction Pump Discharge ConnectionGlycol general arrangement Glycool general arrangement Glycol Regulating Valve Adjustment Glycol Regulating ValveChilled Water Models Air-Cooled Condensing Units Water/Glycol-Cooled Condensing UnitsRefrigerant Loop Line coupling sizes Unit refrigerant chargeRecommended refrigerant lines R22 or R407C sizes OD copper Evaporator Evaporator Condensing UnitQuick Connect Fittings Unit Dimensions See Table Outdoor Air-Cooled Condensing UnitsPFH067A-L Outdoor air-cooled condensing unit-top air discharge models See Table152 Piping and electrical connections top air discharge36-1/4 38-1/2 Electrical field connections, prop fan condensing module SL-11081 PG 8AInstalling the Indoor Condensing Unit Model Net Weight 60 Hz 50 Hz Lb kg MC65A MC64ACentrifugal Air-Cooled Condensing Units Indoor centrifugal condensing unitDucting Airflow CFM CMHCentrifugal air-cooled condensing unit dimensional data AIR Cooled Water Cooled Regulating Valve Adjustment and Testing Water and Glycol-Cooled Condensing UnitsPiping Considerations Condenser Water RequirementsWater/glycol-cooled condensing unit dimensions WATER/GLYCOL Temperature Gauge Pressure Psig KPa R407C RefrigerantExample Temperature Pressure Gauge Psig KPaCalculating Subcooling Ne t ItiTi n That

ITR specifications

The Liebert ITR is an advanced precision cooling unit designed to maintain optimal temperature and humidity levels in mission-critical environments. Engineered for high-performance applications, it is particularly suitable for data centers, telecommunications facilities, and other spaces that require precise climate control to ensure uninterrupted operation of sensitive equipment.

One of the main features of the Liebert ITR is its modular design. This allows for scalability and flexibility, enabling users to customize the system based on their specific cooling needs. The unit can be configured in various sizes and cooling capacities, making it suitable for both small server rooms and large data centers. This adaptability is crucial for organizations that anticipate growth and require an efficient cooling solution that can evolve with their infrastructure.

The Liebert ITR incorporates state-of-the-art technologies to enhance performance and energy efficiency. Among these technologies is the use of a variable speed compressor that adjusts its speed based on the cooling load. This capability not only improves energy efficiency but also significantly reduces operational costs by minimizing electricity consumption when cooling demands fluctuate.

Additionally, the unit features advanced control systems that provide intelligent monitoring and management of temperature and humidity levels. These systems can integrate seamlessly with building management systems (BMS) and can be operated remotely, providing users with real-time insights into the performance of the cooling system. Such connectivity ensures quick identification and resolution of potential issues, thereby reducing downtime and maintaining optimal conditions for critical equipment.

The Liebert ITR utilizes eco-friendly refrigerants, contributing to reduced environmental impact while ensuring compliance with regulatory standards. The unit's design also emphasizes reliability, featuring robust construction and redundant components that enhance longevity and minimize the likelihood of failures.

Furthermore, the Liebert ITR is equipped with advanced filtration systems that maintain air quality by reducing particulate matter and contaminants, ensuring that the atmosphere within data centers is not only cool but also clean—critical for the longevity of sensitive electronic equipment.

Overall, the Liebert ITR is characterized by its innovative design, energy-efficient operation, and comprehensive control capabilities, making it an ideal choice for businesses looking to safeguard their critical infrastructure from overheating and humidity. As climate control becomes increasingly important in the digital age, the Liebert ITR stands out as a reliable solution for maintaining optimal environmental conditions.