Cypress CY14B101K manual Power Monitor, Interrupts, Interrupt Register, Flags Register

Page 9

CY14B101K

Figure 4. Watchdog Timer Block Diagram

Oscillator

 

Clock

 

1 Hz

 

Divider

 

 

 

 

 

32,768 KHz

 

 

32 Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

Counter Zero

Compare

WDF

the output pin driver on INT pin. These two bits are located in the Interrupt register and can be used to drive level or pulse mode output from the INT pin. In pulse mode, the pulse width is internally fixed at approximately 200 ms. This mode is intended to reset a host microcontroller. In the level mode, the pin goes to its active polarity until the Flags register is read by the user. This mode is used as an interrupt to a host microcontroller. The control bits are summarized in the following section.

 

 

 

 

WDS

 

Load

 

Register

 

 

D

Q

WDW

 

 

Q

 

Watchdog

write to

Register

Watchdog

 

Register

 

Power Monitor

The CY14B101K provides a power management scheme with power fail interrupt capability. It also controls the internal switch to backup power for the clock and protects the memory from low VCC access. The power monitor is based on an internal band gap reference circuit that compares the VCC voltage to VSWITCH threshold.

As described in the “AutoStore® Operation” on page 3, when VSWITCH is reached as VCC decays from power loss, a data store operation is initiated from SRAM to the nonvolatile elements, securing the last SRAM data state. Power is also switched from VCC to the backup supply (battery or capacitor) to operate the RTC oscillator.

When operating from the backup source, read and write opera- tions to nvSRAM are inhibited and the clock functions are not available to the user. The clock continues to operate in the background. The updated clock data is available to the user tHRECALL delay after VCC is restored to the device (see “AutoStore or Power Up RECALL” on page 19).

Interrupts

The CY14B101K has a Flags register, Interrupt register and Interrupt logic that can signal interrupt to the microcontroller. There are three potential sources for interrupt: watchdog timer, power monitor, and alarm timer. Each of these can be individually enabled to drive the INT pin by appropriate setting in the Interrupt register (0x1FFF6). In addition, each has an associated flag bit in the Flags register (0x1FFF0) that the host processor uses to determine the cause of the interrupt. The INT pin driver has two bits that specify its behavior when an interrupt occurs.

An Interrupt is raised only if both a flag is raised by one of the three sources and the respective interrupt enable bit in Interrupts register is enabled (set to ‘1’). After an interrupt source is active, two programmable bits, H/L and P/L, determine the behavior of

Interrupt Register

Watchdog Interrupt Enable - WIE. When set to ‘1’, the watchdog timer drives the INT pin and an internal flag when a watchdog time out occurs. When WIE is set to ‘0’, the watchdog timer only affects the WDF flag in Flags register.

Alarm Interrupt Enable - AIE. When set to ‘1’, the alarm match drives the INT pin and an internal flag. When AIE is set to ‘0’, the alarm match only affects the AF flagin Flags register.

Power Fail Interrupt Enable - PFE. When set to ‘1’, the power fail monitor drives the pin and an internal flag. When PFE is set to ‘0’, the power fail monitor only affects the PF flag in Flags register.

High/Low - H/L. When set to a ‘1’, the INT pin is active HIGH and the driver mode is push pull. The INT pin drives high only when VCC is greater than VSWITCH. When set to a ‘0’, the INT pin is active LOW and the drive mode is open drain. Active LOW (open drain) is operational even in battery backup mode.

Pulse/Level - P/L. When set to a ‘1’ and an interrupt occurs, the INT pin is driven for approximately 200 ms. When P/L is set to a ‘0’, the INT pin is driven high or low (determined by H/L) until the Flags or Control register is read.

When an enabled interrupt source activates the INT pin, an external host reads the Flags registers to determine the cause. Remember that all flags are cleared when the register is read. If the INT pin is programmed for Level mode, then the condition clears and the INT pin returns to its inactive state. If the pin is programmed for Pulse mode, then reading the flag also clears the flag and the pin. The pulse does not complete its specified duration if the Flags register is read. If the INT pin is used as a host reset, then the Flags or Control register is not read during a reset.

Flags Register

The Flag register has three flag bits: WDF, AF, and PF, which can be used to generate an interrupt. These flags are set by the watchdog timeout, alarm match, or power fail monitor respec- tively. The processor can either poll this register or enable inter- rupts to be informed when a flag is set. These flags are automat- ically reset once the register is read. The flags register is automatically loaded with the value 00h on power up (except for the OSCF bit. See “Stopping and Starting the Oscillator” on page 7.)

Document Number: 001-06401 Rev. *I

Page 9 of 28

[+] Feedback

Image 9
Contents Logic Block Diagram FeaturesFunctional Description Cypress Semiconductor Corporation 198 Champion CourtOutput Enable, Active LOW. The active low Pin ConfigurationsPower Supply Inputs to the Device Pin DefinitionsDevice Operation AutoStore OperationHardware Store HSB Operation Software Store Hardware Recall Power UpSoftware Recall Data ProtectionCurrent versus Cycle Time Low Average Active Power Best PracticesRead Sram Mode Selection A15 A0 PowerWrite Sram StoreReal Time Clock Operation Alarm Watchdog TimerCalibrating the Clock Interrupts Power MonitorInterrupt Register Flags RegisterRecommended Values Interrupt Block DiagramWDF Oscf RTC Register Map5 BCD Format Data Function/RangeTime Keeping Months 0x1FFFE 10s Month Register Map Detail Time Keeping Years 0x1FFFF 10s YearsDate Time Keeping Hours 0x1FFFB Time Keeping Minutes 0x1FFFARegister Map Detail Calibration/Control Alarm Day 0x1FFF50x1FFF7 Interrupt Status/Control 0x1FFF6Register Map Detail Alarm Hours 0x1FFF4 10s Alarm Hours To ignore the hours value Alarm Minutes 0x1FFF3When the Flags register is read or on power-up Range Ambient Temperature DC Electrical CharacteristicsMaximum Ratings Operating RangeCapacitance Data Retention and EnduranceThermal Resistance AC Test ConditionsParameter Sram Read Cycle AC Switching CharacteristicsParameter Sram Write Cycle Min MaxParameter Description CY14B101K Unit Min Max AutoStore or Power Up RecallParameter Alt Description 25 ns 35 ns 45 ns Unit Min Max Software Controlled STORE/RECALL Cycles 21Hardware Store Cycle Soft Sequence CommandsRTC Characteristics Inputs and Outputs Mode PowerTruth Table For Sram Operations Nvsram Part Numbering Nomenclature CY 14 B 101 K SP 25 X C TOrdering Information Pin Shrunk Small Outline Package Package DiagramsOrig. of Change Submission Description of Change Date Document History2663934 Updated FeaturesSales, Solutions, and Legal Information Worldwide Sales and Design Support Products PSoC SolutionsUSB