Cypress CY7C1320CV18 Identification Register Definitions, Scan Register Sizes, Instruction Codes

Page 17

CY7C1316CV18, CY7C1916CV18

CY7C1318CV18, CY7C1320CV18

Identification Register Definitions

Instruction Field

 

Value

 

Description

CY7C1316CV18

CY7C1916CV18

CY7C1318CV18

CY7C1320CV18

 

 

Revision Number

000

000

000

000

Version number.

(31:29)

 

 

 

 

 

Cypress Device ID

11010100010000101

11010100010001101

11010100010010101

11010100010100101

Defines the type of

(28:12)

 

 

 

 

SRAM.

Cypress JEDEC ID

00000110100

00000110100

00000110100

00000110100

Allows unique

(11:1)

 

 

 

 

identification of

 

 

 

 

 

SRAM vendor.

ID Register

1

1

1

1

Indicates the

Presence (0)

 

 

 

 

presence of an ID

 

 

 

 

 

register.

Scan Register Sizes

Register Name

Bit Size

Instruction

3

 

 

Bypass

1

 

 

ID

32

 

 

Boundary Scan

107

 

 

Instruction Codes

Instruction

Code

Description

EXTEST

000

Captures the input and output ring contents.

 

 

 

IDCODE

001

Loads the ID register with the vendor ID code and places the register between TDI and TDO.

 

 

This operation does not affect SRAM operation.

SAMPLE Z

010

Captures the input and output contents. Places the boundary scan register between TDI and

 

 

TDO. Forces all SRAM output drivers to a High-Z state.

RESERVED

011

Do Not Use: This instruction is reserved for future use.

 

 

 

SAMPLE/PRELOAD

100

Captures the input and output ring contents. Places the boundary scan register between TDI

 

 

and TDO. Does not affect the SRAM operation.

RESERVED

101

Do Not Use: This instruction is reserved for future use.

 

 

 

RESERVED

110

Do Not Use: This instruction is reserved for future use.

 

 

 

BYPASS

111

Places the bypass register between TDI and TDO. This operation does not affect SRAM

 

 

operation.

Document Number: 001-07160 Rev. *E

Page 17 of 29

[+] Feedback

Image 17
Contents Configurations FeaturesFunctional Description Selection GuideLogic Block Diagram CY7C1916CV18 Logic Block Diagram CY7C1316CV18Doff CLKBWS Logic Block Diagram CY7C1318CV18Logic Block Diagram CY7C1320CV18 Ball Fbga 13 x 15 x 1.4 mm Pinout Pin ConfigurationCY7C1316CV18 2M x CY7C1916CV18 2M xCY7C1320CV18 512K x CY7C1318CV18 1M xSynchronous Read/Write Input. When Pin DefinitionsPin Name Pin Description Power Supply Inputs for the Outputs of the Device Power Supply Inputs to the Core of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Echo Clocks Application ExampleSRAM#1 ZQ SRAM#2Operation Write Cycle DescriptionsFirst Address External Second Address Internal CommentsBWS0 Ieee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram TAP Electrical Characteristics TAP Controller Block DiagramTAP Timing and Test Conditions TAP AC Switching CharacteristicsScan Register Sizes Identification Register DefinitionsInstruction Codes Register Name Bit SizeBit # Bump ID Boundary Scan OrderDLL Constraints Power Up Sequence in DDR-II SramPower Up Sequence Maximum Ratings Electrical CharacteristicsDC Electrical Characteristics AC Electrical Characteristics Thermal Resistance CapacitanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitParameter Min Max Switching CharacteristicsDLL Timing Parameter Min Max Output TimesDON’T Care Undefined Switching WaveformsOrdering Information 200 Ball Fbga 13 x 15 x 1.4 mm Package DiagramWorldwide Sales and Design Support Products PSoC Solutions Sales, Solutions, and Legal Information

CY7C1320CV18, CY7C1916CV18, CY7C1316CV18, CY7C1318CV18 specifications

Cypress Semiconductor, a leading provider of high-performance memory solutions, offers a range of Static Random-Access Memory (SRAM) products ideal for various applications. Among these are the CY7C1320CV18, CY7C1916CV18, CY7C1316CV18, and CY7C1318CV18, each designed to meet the demands of modern electronic systems with distinctive features, technologies, and characteristics.

The CY7C1320CV18 is a high-performance 2-Mbit SRAM that operates at a voltage of 1.8V. Designed with speed in mind, it has access times as low as 12 ns, making it suitable for applications requiring quick data retrieval. The device features a simple asynchronous interface, allowing it to be easily integrated into various circuits. With a low power consumption profile and the ability to operate under a wide temperature range, the CY7C1320CV18 is an ideal choice for battery-operated devices and industrial environments.

Following closely, the CY7C1916CV18 is a highly integrated, 16-Mbit synchronous SRAM. This device stands out due to its robust data transfer capabilities, supporting a single-cycle read and write operation, which greatly enhances system performance. The device operates with a supply voltage of 1.8V and features an impressive latency, making it perfect for high-speed applications such as digital signal processing and telecommunications. The unique pipelined architecture allows for higher throughput and efficiency in memory access.

The CY7C1316CV18 is another notable member of this family, featuring 16K x 8 bits of memory. It is characterized by low power consumption and a fast access time, which helps to reduce latency in critical applications. With a simple asynchronous interface and competitive pricing, the CY7C1316CV18 is suitable for consumer electronics and automotive applications that require reliable performance.

Lastly, the CY7C1318CV18 is a comprehensive solution featuring 32K x 8 bits of memory. This device also operates with low power and high speed, making it efficient for caching, buffering, and temporary storage applications. Its compatibility with industry standards makes it easily integrable into existing systems.

In summary, the CY7C1320CV18, CY7C1916CV18, CY7C1316CV18, and CY7C1318CV18 SRAM devices from Cypress Semiconductor showcase cutting-edge technology, high performance, and versatility, catering to the evolving needs of today's electronics, from telecommunications to consumer devices. Their low power consumption, high-speed access, and reliable data integrity make them essential components in modern electronic designs.