Maxtor 91707U5, 91024U3, 90683U2, 92049U6, 91366U4, 92732U8 manual Major HDA Components

Page 16

PRODUCTDESCRIPTION

Major HDA Components

Drive Mechanism

A brush-less DC direct drive motor rotates the spindle at 7,200 RPM (±0.1%). The dynamically balanced motor/spindle assembly ensures minimal mechanical run-out to the disks. A dynamic brake provides a fast stop to the spindle motor upon power removal. The speed tolerance includes motor performance and motor circuit tolerances.

Rotary Actuator

All DiamondMax™ Plus 6800 drives employ a rotary voice coil actuator which consists of a moving coil, an actuator arm assembly and stationary magnets. The actuator moves on a low-mass, low-friction center shaft. The low friction contributes to fast access times and low power consumption.

Read/Write Electronics

An integrated circuit mounted within the sealed head disk assembly (near the read/write heads) provides up to eight head selection (depending on the model), read pre-amplification and write drive circuitry.

Read/Write Heads and Media

Low mass, low force giant magneto-resistive read/write heads record data on 3.5-inch diameter disks. Maxtor uses a sputtered thin film medium on all disks for DiamondMax Plus 6800 drives.

Air Filtration System

All DiamondMax Plus 6800 drives are assembled in a Class 100 controlled environment. Over the life of the drive, a 0.1 micron filter and breather filter located within the sealed head disk assembly (HDA) maintain a clean environment to the heads and disks. DiamondMax Plus 6800 drives are designed to operate in a typical office environment with minimum environmental control.

Microprocessor

The microprocessor controls the following functions for the drive electronics:

Command execution

Cache management

Data correction and error recovery

Diagnostic execution

Data sequencing

Head positioning (including error recovery)

Host interface

Index detection

Spin speed control

Seeks

Servo

S.M.A.R.T.

2 – 5

Image 16
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date Before You Begin U T I O NContents Product Specifications Handling and InstallationAT Interface Description Host Software InterfaceService and Support Interface CommandsGlossary Figures Introduction Maxtor CorporationManual Organization AbbreviationsSignal Conventions ConventionsKey Words NumberingDiamondMax Plus 6800 Key Features Product DescriptionProduct Features Functional / InterfaceOn-the-Fly Hardware Error Correction Code ECC Logical Block AddressingDefect Management Zone DMZ Software ECC CorrectionRead-Ahead Mode Cache ManagementBuffer Segmentation Automatic Write Reallocation AWRMajor HDA Components Subsystem Configuration Jumper Location/ConfigurationCylinder Limitation Dual Drive SupportProduct Specifications Drive ConfigurationPerformance Specifications Models and CapacitiesPhysical Dimensions Parameter Standard MetricPower Requirements Power Mode DefinitionsEPA Energy Star Compliance Environmental LimitsReliability Specifications Shock and VibrationRadiated Electromagnetic Field Emissions EMC Compliance Safety Regulatory ComplianceCanadian Emissions Statement Handling and Installation Hard Drive Handling PrecautionsPre-formatted Drive Important NoticeUnpacking and Inspection Multi-pack Shipping ContainerRecommended Mounting Configuration Physical InstallationRepacking Handling Precautions Tools for InstallationSystem Requirements Drive Identification InformationGeneral Requirements Hard Drive IdentificationSystems Using Cable Select Installing 5.25-inch Mounting Brackets and RailsInstalling in a Device Bay Mounting Drive in SystemAttaching Interface and Power Cables Attaching System CablesSetting the Bios Cmos System SetupBios Cmos Parameters Hard Drive Preparation System Hangs During Boot Interface Connector AT Interface DescriptionPin Description Summary PINPIN Name Signal Name Signal Description Pin Description TableTiming Parameters Mode PIO TimingDMA Timing Mode MIN MAX Ultra DMA TimingSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Error Register Features RegisterHost Software Interface Task File RegistersSector Count Register Sector Number RegisterCylinder Number Registers Device/Head RegisterCommand Register Timer Value TIME-OUT Period Command Name Command Code Parameters UsedSummary Control Diagnostic Registers Alternate Status RegisterDevice Control Register Digital Input RegisterReset Handling Reset and Interrupt HandlingInterrupt Handling Interface Commands Set Feature CommandsRead Sectors Read CommandsRead Verify Sectors Read DMA Read MultipleWrite Commands Set Multiple ModeWrite Sectors Write Verify SectorsWrite Multiple Write DMASet Features Mode Set Feature CommandsValue Description Power Mode Commands Sleep Mode Word Content Description Initialization CommandsIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Seek, Format and Diagnostic Commands Execute Drive DiagnosticError Code Description Format TrackA.R.T. Command Set Execute S.M.A.R.TService and Support Service PolicyNo Quibble Service SupportCustomer Service MaxFax ServiceInternet Access Time GlossaryCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.