Maxtor 90683U2, 91024U3, 92049U6, 91366U4, 91707U5, 92732U8 manual Hard Drive Preparation

Page 31

INSTALLATION

drive parameters must be set using the User Definable Type (UDT).

Set the Cylinder, Head and Sector values with the values listed on the drive label. The drive label is located on the top cover of the drive. The fields LZone (Landing Zone) and WPcom (Write Pre-comp) are not used by the Maxtor hard drive. These fields may be set to 0 or by the values assigned by the BIOS.

Note: Each BIOS manufacturer uses different methods of identifying the UDT. Newer BIOS’ from all manufacturer’s will usually include an entry called

“User” or “User 1.” Older BIOS’ vary in the method used to identify the UDT. Following are examples of BIOS UDT: AMI = Type 47, Award = Type 47 and Phoenix = Type 48

Only the cylinder, head and sector values printed on the drive label must be entered. All other values may be zero (0). Set the LBA mode to enabled for this drive. Refer to the system user’s manual or contact the system manufacturer for information on enabling LBA.

If the SETUP program does not provide the UDT, set the BIOS to the drive type with the largest capacity of those listed in the BIOS.

CAfter the drive parameters are entered, follow the SETUP program procedures to save the settings and exit the SETUP program. After changing BIOS settings, saving the values and exiting, the SETUP program should force the system to re-boot.

If you are not sure how the UDT is defined in the BIOS, refer to the computer user’s manual or contact the system manufacturer.

8 Hard Drive Preparation

To finish the installation, the drive must be partitioned and formatted. Hard drive partitioning and formatting may be done with the operating system software or with MaxBlast installation software. Select A or B below to complete the preparation of the Maxtor hard drive.

NOTE: Drive letter assignment is controlled by the operating system and not by the BIOS or MaxBlast. The operating system assigns drive letters to all devices

as follows: (1) to all hard drives and their partitions; (2) to all other devices like CD-ROM’s and tape drives. When adding an additional hard drive to the system, the drive letters will be automatically changed by the operating system.

APreparing the hard drive using the operating system software.

IMPORTANT Due to operating system limitations, DOS operating systems cannot access the full capacity of drives larger than 8.4 GB. The Windows 95 full installation, not an upgrade from DOS, operating system or equivalent is required to obtain the full capacity of any drive larger than 8.4 GB.

If the system or interface card correctly supports the Maxtor hard drive, the drive may be partitioned and formatted using the operating system software. If the cylinder limitation jumper (J46) is installed or the BIOS does not support the hard drive, the MaxBlast installation software (option B below) must be used to prepare the hard drive.

NOTE: All versions of DOS, PC-DOS, DR-DOS and Windows 95A (FAT 16 support) have a partition size limitation of 2.1 GB. For drives larger than 2.1 GB, the drive must be divided into partitions that do not exceed the 2.1 GB limitation. Windows 95B (OSR2) does not have this limitation. Windows NT, OS2, UNIX, LINUX and Novell NetWare may have different limitations but please refer to their documentation or contact the manufacturer to verify their support or limitations.

For detailed operating system installation assistance, refer to the system manufacturers user’s manual, the operating system user’s manual or contact the manufacturer directly.

BPreparing the hard drive using MaxBlast installation software.

1 Boot the system with the bootable MaxBlast software installation diskette.

2 The MaxBlast installation software will load and the first screen of the program will display. Follow the on-screen prompts to complete the hard drive installation.

4 – 9

Image 31
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date U T I O N Before You BeginContents Handling and Installation Product SpecificationsHost Software Interface AT Interface DescriptionService and Support Interface CommandsGlossary Figures Abbreviations IntroductionMaxtor Corporation Manual OrganizationNumbering Signal ConventionsConventions Key WordsProduct Description DiamondMax Plus 6800 Key FeaturesFunctional / Interface Product FeaturesSoftware ECC Correction On-the-Fly Hardware Error Correction Code ECCLogical Block Addressing Defect Management Zone DMZAutomatic Write Reallocation AWR Read-Ahead ModeCache Management Buffer SegmentationMajor HDA Components Dual Drive Support Subsystem ConfigurationJumper Location/Configuration Cylinder LimitationModels and Capacities Product SpecificationsDrive Configuration Performance SpecificationsParameter Standard Metric Physical DimensionsEnvironmental Limits Power RequirementsPower Mode Definitions EPA Energy Star ComplianceShock and Vibration Reliability SpecificationsRadiated Electromagnetic Field Emissions EMC Compliance Safety Regulatory ComplianceCanadian Emissions Statement Important Notice Handling and InstallationHard Drive Handling Precautions Pre-formatted DriveMulti-pack Shipping Container Unpacking and InspectionRecommended Mounting Configuration Physical InstallationRepacking Drive Identification Information Handling PrecautionsTools for Installation System RequirementsHard Drive Identification General RequirementsMounting Drive in System Systems Using Cable SelectInstalling 5.25-inch Mounting Brackets and Rails Installing in a Device BayAttaching System Cables Attaching Interface and Power CablesSetting the Bios Cmos System SetupBios Cmos Parameters Hard Drive Preparation System Hangs During Boot PIN Interface ConnectorAT Interface Description Pin Description SummaryPin Description Table PIN Name Signal Name Signal DescriptionPIO Timing Timing Parameters ModeDMA Timing Ultra DMA Timing Mode MIN MAXSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Task File Registers Error RegisterFeatures Register Host Software InterfaceDevice/Head Register Sector Count RegisterSector Number Register Cylinder Number RegistersCommand Register Timer Value TIME-OUT Period Command Name Command Code Parameters UsedSummary Digital Input Register Control Diagnostic RegistersAlternate Status Register Device Control RegisterReset Handling Reset and Interrupt HandlingInterrupt Handling Set Feature Commands Interface CommandsRead Sectors Read CommandsRead Verify Sectors Read Multiple Read DMAWrite Verify Sectors Write CommandsSet Multiple Mode Write SectorsWrite DMA Write MultipleSet Features Mode Set Feature CommandsValue Description Power Mode Commands Sleep Mode Word Content Description Initialization CommandsIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Format Track Seek, Format and Diagnostic CommandsExecute Drive Diagnostic Error Code DescriptionExecute S.M.A.R.T A.R.T. Command SetSupport Service and SupportService Policy No Quibble ServiceCustomer Service MaxFax ServiceInternet Glossary Access TimeCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.