Maxtor Essential Jumper Settings for DiamondMax Plus 9 Hard Drives

Page 27

INSTALLATION

2 General Requirements

System Hardware Requirements

The minimum system Maxtor recommends for drives 8.4 GB or less is a 486 DX 66 MHz system. For drives larger than 8.4 GB, we recommend a Pentium-class system.

BIOS Requirements

System BIOS dated prior to September 1997 do not support drives greater than 8.4 GB. To obtain the full capacity of a drive larger than 8.4 GB, upgrade the BIOS, install a BIOS enhancercardorusetheMaxBlastinstallationsoftware(version9.06ornewer).

Ultra Direct Memory Access (UDMA)

UDMA mode on a Maxtor hard drive will only activate when the drive is installed in a system with full UDMA capability, i.e., a mother board or interface card with the UDMA chips and the associated UDMA software drivers.

OS Requirements for Large Capacity Hard Drives

A full installation of the Windows 95 operating system is required for hard drives larger than 8.4 GB when the drive is a Primary Master. An upgrade to Windows 95 from Windows 3.11 and/or the DOS operating system will not support drive capacities greater than 8.4 GB when the drive is a Primary Master.

3 Hard Drive Identification

IDE stands for Integrated Drive Electronics and EIDE is Enhanced IDE. The IDE or EIDE interface is designed to support two devices – typically hard drives – on a single ribbon cable through one 40 pin connector on the mother board or interface card.

Some mother boards and interface cards may have a second IDE/EIDE connector to support two additional IDE devices. The IDE/EIDE interface is identified as a primary or secondary interface. In systems with only a single connector on the mother board or interface card, it is the primary IDE/EIDE interface. To add a second IDE/EIDE interface requires a special interface card. In systems with two connectors on the mother board or interface card, one is the primary and the other as the secondary.

The primary interface must be used for at least one IDE device before connecting any devices to the secondary IDE interface.

Ribbon cable lengths are limited to 18 inches and have two or three 40 pin connectors. This cable is referred to as a parallel cable and IDE devices may be connected anywhere on the cable. One of the connectors is attached to the IDE connector on the mother board or interface card and the remaining connector(s) are available for the IDE devices.

Identifying IDE Devices on the Interface

Each device must be identified as either the Master or Slave device on that interface (cable). Each cable must have a Master before it can have a Slave device on the cable. There cannot be two Master or two Slave devices on the same cable.

IDE devices use jumpers to designate the Master/Slave identification of the device. Each manufacturer may have its own jumpering scheme to identify the device as a Master or Slave and its relationship to other IDE devices attached to the same cable.

Jumper Settings

A jumper is a small piece of plastic that slides over a pair of configuration pins on the drive to activate a specific function. The jumper illustration below shows three valid jumper settings for Maxtor hard drives – Master, Slave and Cable Select. Maxtor hard drives can be set as either a Master or a Slave device. There are no other jumpers to set when the Maxtor drive is installed on the same ribbon cable with another IDE device.

4 – 5

Rear View of Maxtor Hard Drive

Master, Slave and Cable Select Settings

Image 27
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date U T I O N Before You BeginContents Handling and Installation Product SpecificationsHost Software Interface AT Interface DescriptionInterface Commands Service and SupportGlossary Figures Abbreviations IntroductionMaxtor Corporation Manual OrganizationNumbering Signal ConventionsConventions Key WordsProduct Description DiamondMax Plus 6800 Key FeaturesFunctional / Interface Product FeaturesSoftware ECC Correction On-the-Fly Hardware Error Correction Code ECCLogical Block Addressing Defect Management Zone DMZAutomatic Write Reallocation AWR Read-Ahead ModeCache Management Buffer SegmentationMajor HDA Components Dual Drive Support Subsystem ConfigurationJumper Location/Configuration Cylinder LimitationModels and Capacities Product SpecificationsDrive Configuration Performance SpecificationsParameter Standard Metric Physical DimensionsEnvironmental Limits Power RequirementsPower Mode Definitions EPA Energy Star ComplianceShock and Vibration Reliability SpecificationsSafety Regulatory Compliance Radiated Electromagnetic Field Emissions EMC ComplianceCanadian Emissions Statement Important Notice Handling and InstallationHard Drive Handling Precautions Pre-formatted DriveMulti-pack Shipping Container Unpacking and InspectionPhysical Installation Recommended Mounting ConfigurationRepacking Drive Identification Information Handling PrecautionsTools for Installation System RequirementsHard Drive Identification General RequirementsMounting Drive in System Systems Using Cable SelectInstalling 5.25-inch Mounting Brackets and Rails Installing in a Device BayAttaching System Cables Attaching Interface and Power CablesSystem Setup Setting the Bios CmosBios Cmos Parameters Hard Drive Preparation System Hangs During Boot PIN Interface ConnectorAT Interface Description Pin Description SummaryPin Description Table PIN Name Signal Name Signal DescriptionPIO Timing Timing Parameters ModeDMA Timing Ultra DMA Timing Mode MIN MAXSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Task File Registers Error RegisterFeatures Register Host Software InterfaceDevice/Head Register Sector Count RegisterSector Number Register Cylinder Number RegistersCommand Register Command Name Command Code Parameters Used Timer Value TIME-OUT PeriodSummary Digital Input Register Control Diagnostic RegistersAlternate Status Register Device Control RegisterReset and Interrupt Handling Reset HandlingInterrupt Handling Set Feature Commands Interface CommandsRead Commands Read SectorsRead Verify Sectors Read Multiple Read DMAWrite Verify Sectors Write CommandsSet Multiple Mode Write SectorsWrite DMA Write MultipleSet Feature Commands Set Features ModeValue Description Power Mode Commands Sleep Mode Initialization Commands Word Content DescriptionIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Format Track Seek, Format and Diagnostic CommandsExecute Drive Diagnostic Error Code DescriptionExecute S.M.A.R.T A.R.T. Command SetSupport Service and SupportService Policy No Quibble ServiceMaxFax Service Customer ServiceInternet Glossary Access TimeCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.