Maxtor 91024U3, 90683U2, 92049U6, 91366U4, 91707U5, 92732U8 manual Initialize Drive Parameters

Page 60

INTERFACECOMMANDS

Initialize Drive Parameters

Enables the drive to operate as any logical drive type. The drive will always be in the translate mode because of Zone Density Recording, which varies the number of sectors per track depending on the zone.

Through setting the Sector Count Register and Drive Head Register, this command lets the host alter the drive's logical configuration. As a result, the drive can operate as any equal to or less than capacity drive type. Do not exceed the total number of sectors available on the drive:

When this command is executed, the drive reads the Sector Counter Register and the Drive Head Register (and so determines the number of the logical sectors per track and maximum logical head number per cylinder and will calculate the number of logical cylinders.)

Upon receipt of the command, the drive:

1.Sets BSY,

2.Saves the parameters,

3.Resets BSY and

4.Generates an interrupt.

To specify maximum heads, write 1 less than the maximum (e.g. write 4 for a 5 head drive). To specify maximum sectors, specify the actual number of sectors (e.g. 17 for a maximum of 17 sectors/track).

The sector count and head values are not checked for validity by this command. If they are invalid, no error will be posted until an illegal access is made by some other command.

Moves the read/write heads from anywhere on the disk to cylinder 0.

When this command is received, the drive:

1.Sets BSY and

2.Issues a seek to cylinder zero.

The drive waits for the seek to complete, then the drive:

1.Updates status,

2.Resets BSY and

3.Generates an interrupt.

If the drive cannot reach cylinder 0, the Error bit is set in the Status register, and the Track 0 bit is set in the Error register.

NOTE: If a maximum head and sector number is selected – such that the number of cylinders will exceed 65,535 – then the maximum cylinder value will be reduced to 65, 535.

7 – 12

Image 60
Contents HA RD Drive Produc T MA Nual DiamondMax Plus REV EC no Section Description Date Before You Begin U T I O NContents Product Specifications Handling and InstallationAT Interface Description Host Software InterfaceInterface Commands Service and SupportGlossary Figures Introduction Maxtor CorporationManual Organization AbbreviationsSignal Conventions ConventionsKey Words NumberingDiamondMax Plus 6800 Key Features Product DescriptionProduct Features Functional / InterfaceOn-the-Fly Hardware Error Correction Code ECC Logical Block AddressingDefect Management Zone DMZ Software ECC CorrectionRead-Ahead Mode Cache ManagementBuffer Segmentation Automatic Write Reallocation AWRMajor HDA Components Subsystem Configuration Jumper Location/ConfigurationCylinder Limitation Dual Drive SupportProduct Specifications Drive ConfigurationPerformance Specifications Models and CapacitiesPhysical Dimensions Parameter Standard MetricPower Requirements Power Mode DefinitionsEPA Energy Star Compliance Environmental LimitsReliability Specifications Shock and VibrationSafety Regulatory Compliance Radiated Electromagnetic Field Emissions EMC ComplianceCanadian Emissions Statement Handling and Installation Hard Drive Handling PrecautionsPre-formatted Drive Important NoticeUnpacking and Inspection Multi-pack Shipping ContainerPhysical Installation Recommended Mounting ConfigurationRepacking Handling Precautions Tools for InstallationSystem Requirements Drive Identification InformationGeneral Requirements Hard Drive IdentificationSystems Using Cable Select Installing 5.25-inch Mounting Brackets and RailsInstalling in a Device Bay Mounting Drive in SystemAttaching Interface and Power Cables Attaching System CablesSystem Setup Setting the Bios CmosBios Cmos Parameters Hard Drive Preparation System Hangs During Boot Interface Connector AT Interface DescriptionPin Description Summary PINPIN Name Signal Name Signal Description Pin Description TableTiming Parameters Mode PIO TimingDMA Timing Mode MIN MAX Ultra DMA TimingSustained Ultra DMA Data In Burst Device Terminating an Ultra DMA Data In Burst Initiating an Ultra DMA Data Out Burst Device Pausing an Ultra DMA Data Out Burst Device Terminating an Ultra DMA Data Out Burst Error Register Features RegisterHost Software Interface Task File RegistersSector Count Register Sector Number RegisterCylinder Number Registers Device/Head RegisterCommand Register Command Name Command Code Parameters Used Timer Value TIME-OUT PeriodSummary Control Diagnostic Registers Alternate Status RegisterDevice Control Register Digital Input RegisterReset and Interrupt Handling Reset HandlingInterrupt Handling Interface Commands Set Feature CommandsRead Commands Read SectorsRead Verify Sectors Read DMA Read MultipleWrite Commands Set Multiple ModeWrite Sectors Write Verify SectorsWrite Multiple Write DMASet Feature Commands Set Features ModeValue Description Power Mode Commands Sleep Mode Initialization Commands Word Content DescriptionIdentify Drive 15-8 = PIO data transfer mode = Write Cache enabled Initialize Drive Parameters Seek, Format and Diagnostic Commands Execute Drive DiagnosticError Code Description Format TrackA.R.T. Command Set Execute S.M.A.R.TService and Support Service PolicyNo Quibble Service SupportMaxFax Service Customer ServiceInternet Access Time GlossaryCylinder Zero Gigabyte GB Logical Block Addressing Read Gate Signal THIN-FILM Media

91024U3, 92049U6, 90683U2, 91707U5, 92732U8 specifications

The Maxtor series of hard drives, specifically the models 91366U4, 92732U8, 91707U5, 90683U2, and 92049U6, exemplify the evolution of storage technology during the late 1990s and early 2000s, pivotal in shaping contemporary data storage solutions. These hard drives are recognized for their reliability, performance, and impressive capacities for their time.

The Maxtor 91366U4 features a storage capacity of 13.6 GB, delivering a spindle speed of 5,400 RPM. Its UATA interface allows for a fast data transfer rate, which was notable in its category. The model incorporates Advanced Power Management, contributing to lower power consumption and reduced heat generation, making it an appealing choice for system builders looking to enhance system longevity.

Moving on to the Maxtor 92732U8, this model increased capacity to 27.3 GB, aligning with the growing demand for more storage from users and businesses alike. This drive maintained a 5,400 RPM spindle speed while improving the access times, which aided in speeding up file retrieval processes. Noteworthy is its Plug and Play capability, which simplified installation and compatibility across various systems.

The Maxtor 91707U5 brought forward advancements in data integrity with the inclusion of features such as error correction codes. With a storage size of 17.3 GB and similar operational speeds, this model catered to users seeking reliable data management. Its robust build aimed to protect against accidents and environmental factors, ensuring data was safe while providing consistent performance.

The Maxtor 90683U2, with its 68.3 GB capacity, is particularly recognized for its reliability in desktop applications. The drive integrates a combination of Unidirectional Technology, driving advancements in read/write capabilities, and extensive shock protection, making it an ideal candidate for users with intensive data processing requirements.

Lastly, the Maxtor 92049U6 is known for its balanced blend of performance and functionality. Holding a capacity of 49.1 GB and retaining the sophisticated features of its predecessors, this model enabled faster data access and storage capabilities that met the needs of both home and professional users.

Together, these Maxtor hard drives embody the technological strides in the evolution of data storage—offering capacities and performances that set a standard in the industry and laid the groundwork for future storage solutions. The combination of innovative technologies and practical features made these drives highly sought after during their respective periods, and their legacy continues to influence modern data storage products.